首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activity assays, conformational changes and transitional switches between secondary structures of a peroxidase from Euphorbia characias were studied in the presence of trifluoroethanol and in the presence or absence of calcium ions. The addition of trifluoroethanol up to 10–20% first induced a drastic decrease of α-helix content followed by an increase of tryptophan fluorescence emission intensity, a progressive re-induction of the formation of α-helical elements concomitant with loss of enzyme activity. In the presence of calcium ions, the fluorescence of the enzyme almost remained unchanged in the trifluoroethanol concentration range 5–20%. Further increase in trifluoroethanol concentration led to a protein structure characterized by a progressive re-induction of α-helical elements, a remarkable increase of the tryptophan fluorescence and a loss of enzyme activity. These results indicate that calcium ions in Euphorbia peroxidase play an essential role in maintaining the hydrophobic interactions on the protein structure preserving enzymatic activity.  相似文献   

2.
The aminopeptidase N (TH-4AP) of Streptomyces sp. TH-4 was purified from a culture supernatant. The purified enzyme had a molecular mass of 95 kDa. The gene encoding TH-4AP was cloned and sequenced. The primary structure of the protein possessed the PepN-conserved motif GxMEN and the zinc-binding motif HExxHx18E, and showed 88% identity with that of PepN from Streptomyces lividans strain 66. We succeeded in overproducing a His-tagged recombinant enzyme using Escherichia coli. The enzyme had a 1.5-fold higher activity in the presence of cobalt ions than in their absence. To evaluate the possible application of TH-4AP to decrease the content of bitter peptides, we investigated the ability of Streptomyces aminopeptidases to hydrolyze synthetic peptides by a coupling method using l-amino acid oxidase and peroxidase. The substrate specificity of TH-4AP toward synthetic peptides was significantly different from that toward aminoacyl-p-nitroanilide derivatives.  相似文献   

3.
Catalytically active chymotrypsin derivatives can be synthesized from cyanogen bromide-activated Sephadex G200. In most cases the apparent catalytic activity of the covalently fixed enzyme appears to be considerably decreased in comparison to the activity of the free enzyme. However, by proper choice of the reaction conditions for the activation, enzyme conjugates with high activity, even toward a high molecular substrate, can be synthesized. These latter derivatives may be of practical value for the digestion of proteins. Crosslinked dextran as carrier was chosen because of the possbility, of digesting it enzymatically by dextranase. Sephadex G200, if activated at or below pH 10.3, will combine with chymotrypsin to yield digestable products. Changes of apparent kinetic properties of the fixed enzyme can accordingly be studied during the degradation process. On the solubilization of the insoluble conjugate, a total recovery of activity of the fixed enzyme can be obtained in cases the carrier has been activated by a sufficiently mild procedure. The high apparent Michaelis constant Km of insoluble chymotrypsin–Sephadex toward N-acetyl-L -tyrosine ethyl ester shifts back on solubilization to the value of free chymotrypsin. We therefore propose that the decreased activity of an insoluble chymotrypsin–Sephadex is due to diffusional effects shown by the gel matrix toward the substrate. Similarly observed shifts in optimum pH are explained by accumulation of hydrogen ions in the gel. The organic chemical reaction used for coupling the enzyme to the polymer can therefore be performed without decreasing the inherent catalytic activity of the enzyme. The route described for fixing chymotrypsin to Sephadex followed by solubilization of the products may be useful as a synthetic method for binding proteins, peptides, and other amino group-containing substances to soluble carriers, e.g., for the modification of pharmaceuticals.  相似文献   

4.
In the presence of hemin and under appropriate conditions, some modalities of G‐quadruplexes can form a peroxidase‐like DNAzyme that has been widely used in biology. Structure? function studies on the DNAzyme revealed that its catalytic ability may be dependent on the unimolecular parallel G‐quadruplex. In this report, we present the preliminary investigation on the relationship between the structure and function of DNAzymes through a terminal oligo modification in G‐quadruplex sequences by adding different lengths of oligo‐dT to the 3′‐ or 5′‐end of the aptamers. The results suggested that adding dTn to the 5′‐end of the DNA sequence of the enzyme improved the ability of hemin to bind with DNA, but the addition of dTn to the 3′‐end decreased the binding ability of hemin for DNA. The increased stability of the assembled DNAzyme would lead to more favorable binding between the enzyme and substrate (H2O2), facilitating higher peroxidase activity; on the contrary, with lower stability of the DNAzyme complex, we observed reduced peroxidase activity.  相似文献   

5.
An authentic soluble metallo-protein nucleotide pyrophosphatase/phosphodiesterase (ELNPP) was purified to homogeneity from Euphorbia characias latex. The native protein had a molecular mass of 80 ± 5 kDa and was shown to be formed by two apparently identical subunits, each containing 1 Ca2+ and 1 Mg2+ ion. Whereas Mg2+ was shown to be strongly bound to the enzyme, Ca2+ was easily removed by treatment with EDTA. Ca2+-demetalated enzyme was shown to be almost totally inactive and the activity was fully restored incubating the demetalated ELNPP with Ca2+ ions. ELNPP exhibited hydrolytic activities toward pyrophosphate/phosphodiester bonds of a broad range of substrates and very efficiently hydrolyzed the artificial substrate thymidine 5′-monophosphate 4-nitrophenyl ester generating 4-nitrophenolate as a final product, and it has been used for enzyme kinetic experiments. ELNPP represents the first example of a nucleotide pyrophosphatase/phosphodiesterase enzyme purified from the latex of a plant belonging to the large genus Euphorbia.  相似文献   

6.
The antioxidant protein, adhesin thiol peroxidase (HpTpx or HP0390), plays an important role in enabling Helicobacter pylori to survive gastric oxidative stress. The bacterium colonizes the host stomach and produces gastric cancer. However, little information is available about the biochemical characteristics of HpTpx. We expressed recombinant HpTpx in Escherichia coli, purified to homogeneity, and characterized it. The results showed that HpTpx existed in a monomeric hydrodynamic form and the enzyme fully retained its peroxidase and antioxidant activities. The catalytic reaction of the enzyme was similar to an atypical 2-cysteine peroxiredoxin (Prx). The conformation of the enzyme was observed in the presence and absence of dithiothreitol (DTT); similar to other known thiol peroxidases, conformational change was observed in HpTpx by the addition of DTT.  相似文献   

7.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

8.
Bromoperoxidase from the macro-alga Corallina pilulifera is an enzyme that possesses vanadate in the catalytic center, and shows a significant thermostability and stability toward organic solvents. The structural analysis of the recombinant enzyme overexpressed in yeast revealed that it contains one calcium atom per subunit. This has been confirmed by inductively coupled plasma emission spectrometry experiments. The study of the effect of metal ions on the apo-enzyme stability has shown that the calcium ion significantly increased the enzyme stability. In addition, vanadate also increased the thermostability and strontium and magnesium ions had similar effects as calcium. The holo-enzyme shows high stability in a range of organic solvents. The effect of the different ions and solvents on the structure of the enzyme has been studied by circular dichroism experiments. The high stability of the enzyme in the presence of organic solvents is useful for its application as a biocatalyst.  相似文献   

9.
This study is focused on the genus Euphorbia L. in a part of northeast Iran, viz. the three Khorassan provinces. Since there are many taxa of Euphorbia in Iran which are used in different industries and have significant effects on human and non‐human life it is important to revise their taxonomy. With about 90 species, following Turkey with 91 species, Iran is the second richest country for Euphorbia in Asia. Of these, 30 species are distributed in the Khorassan provinces. This is the first comprehensive work on the genus in this region. According to ‘Flora Iranica’, there are 17 species of Euphorbia in northeast Iran, while according to our results, there are 30 species of Euphorbia in the Khorassan provinces alone. In addition to various new taxonomic and biogeographic results, a new species, viz. E. chamanbidensis, is described. Euphorbia chamanbidensis is closely related to E. aucheri, but seed micro‐morphological characters differentiate them. Two identification keys to the Euphorbia species of the studied area are provided, one based on macro‐morphological characters and another based on seed micro‐morphological characters. Phytogeographic analysis and distribution maps for all species are also presented.  相似文献   

10.
Structural characterization and study of the activity of new POX1B protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure–function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX1B exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k cat and K M values were 411 and 400 mM−1 s−1 for 3,3′,5,5′-tetramethylbenzidine and 2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX1B was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX1B showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX1B) is suitable for the monitoring of different analytes and biocatalysis.  相似文献   

11.
Freshly excised Pelargonium pith tissue lacks peroxidase activity toward guaiacol or benzidine, but it develops such activity within 24–36 hr in aseptic culture. All the activity is manifested as a single enzyme moving toward the cathode during electrophoresis on starch gel at pH 9.0. This development of peroxidase activity is at first (up to ca. 50 hr in culture) inhibited and later (ca. 100–150 hr in culture) promoted by IAA. This dual effect of IAA resembles that previously reported for specific isoperoxidases in tobacco pith cells. Kinetin alone also inhibits peroxidase formation, but in the presence of IAA those concentrations which enhance growth enhance peroxidase formation as well.  相似文献   

12.
Euphorbia factor L3, a lathyrane diterpenoid extracted from Euphorbia lathyris, was found to display good anti‐inflammatory activity with very low cytotoxicity. To find more potent anti‐inflammatory drugs, two series of Euphorbia factor L3 derivatives with fatty and aromatic acids were designed and synthesized. Among them, lathyrane derivative 5n exhibited most potent inhibition on LPS‐induced NO production in RAW264.7 cells with no obvious cytotoxicity. To determine the key characteristics of Euphorbia factor L3 derivatives that contribute to anti‐inflammatory activity, we conducted a structure‐activity relationship study of these compounds.  相似文献   

13.
The aminoglycoside modifying enzyme (AME) ANT(2″)‐Ia is a significant target for next generation antibiotic development. Structural studies of a related aminoglycoside‐modifying enzyme, ANT(3″)(9), revealed this enzyme contains dynamic, disordered, and well‐defined segments that modulate thermodynamically before and after antibiotic binding. Characterizing these structural dynamics is critical for in situ screening, design, and development of contemporary antibiotics that can be implemented in a clinical setting to treat potentially lethal, antibiotic resistant, human infections. Here, the first NMR structural ensembles of ANT(2″)‐Ia are presented, and suggest that ATP‐aminoglycoside binding repositions the nucleotidyltransferase (NT) and C‐terminal domains for catalysis to efficiently occur. Residues involved in ligand recognition were assessed by site‐directed mutagenesis. In vitro activity assays indicate a critical role for I129 toward aminoglycoside modification in addition to known catalytic D44, D46, and D48 residues. These observations support previous claims that ANT aminoglycoside sub‐class promiscuity is not solely due to binding cleft size, or inherent partial disorder, but can be controlled by ligand modulation on distinct dynamic and thermodynamic properties of ANTs under cellular conditions. Hydrophobic interactions in the substrate binding cleft, as well as solution dynamics in the C‐terminal tail of ANT(2″)‐Ia, advocate toward design of kanamycin‐derived cationic lipid aminoglycoside analogs, some of which have already shown antimicrobial activity in vivo against kanamycin and gentamicin‐resistant P. aeruginosa. This data will drive additional in silico, next generation antibiotic development for future human use to combat increasingly prevalent antimicrobial resistance.  相似文献   

14.
In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met–His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c 3 from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.  相似文献   

15.
The major peroxidase from 15-day-old wheat plants was purified to homogeneity by FPLC ion exchange and molecular exclusion chromatography. It consists of a single polypeptide of M1 37, 500 according to gel filtration and SDS-PAGE and has a pI of 7.0. Kinetics of pyrogallol peroxidation showed that the enzyme follows the accepted mechanism for peroxidase, with kinetic constants k1= 4.4 × 106 M-1 s-1 and k3 = 8.6 × 105 M-1s-1. The effect of different metal ions was assayed on peroxidase activity. None of the ions used had any effect on enzyme activity, except for Cd(II), which was an inhibitor. This was an unexpected and novel finding for a peroxidase. The kinetics of pyrogallol peroxidation at different concentrations of Cd(II) have been studied and a mechanism for Cd(II) inhibition proposed. The results obtained could explain, in part, cadmium-induced oxidative stress.  相似文献   

16.
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.  相似文献   

17.
Heme‐containing catalases and catalase‐peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase‐peroxidase led us to investigate the enzyme for comparison with other catalase‐peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s?1). In addition, the enzyme supported a much slower (kcat = 20 s?1) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2‐chlorophenol were identified in crystal structures at 1.65–1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low‐spin conversion of the FeIII high‐spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. Proteins 2015; 83:853–866. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Directed evolution has been used to enhance the catalytic activity and alkaline pH stability of Thermobifida fusca xylanase A, which is one of the most thermostable xylanases. Under triple screened traits of activity, alkaline pH stability and thermostability, through two rounds of random mutagenesis using DNA shuffling, a mutant 2TfxA98 with approximately 12-fold increased k cat/K m and 4.5-fold decreased K m compared with its parent was obtained. Moreover, the alkaline pH stability of 2TfxA98 is increased significantly, with a thermostability slightly lower than that of its parent. Five amino acid substitutions (T21A, G25P, V87P, I91T, and G217L), three of them are near the catalytic active site, were identified by sequencing the genes encoding this evolved enzyme. The activity and stabilizing effects of each amino acid mutation in the evolved enzyme were evaluated by site-directed mutagenesis. This study shows a useful approach to improve the catalytic activity and alkaline pH stability of T. fusca xylanase A toward the hydrolysis of xylan.  相似文献   

19.
Tissue cultures of Armoracia rusticana L., both transformed with Agrobacterium rhizogenes and nontransformed, were screened for peroxidase activity. Most of the derived and tested strains exhibited 20 times higher activity [from 99 to 723 U g−1(d.m.)] than the root of the intact plant [(30 U g−1 (d.m.)]. The highest peroxidase activity was found in tumour culture growing on the medium without growth regulators. The influence of the addition of sugars and heavy metal ions in the medium on peroxidase production was tested. Increase in peroxidase activity was observed after cultivation of horseradish culture with cadmium, cobalt, nickel or lead ions.This work is supported by Grant Agency of Czech Republic Project No. 526/04/0135.  相似文献   

20.
The Clostridium acetobutylicum xylanase gene xyn10B (CAP0116) was cloned from the type strain ATCC 824, whose genome was recently sequenced. The nucleotide sequence of C. acetobutylicum xyn10B encodes a 318-amino acid protein. Xyn10B consists of a single catalytic domain that belongs to family 10 of glycosyl hydrolases. The enzyme was purified from recombinant Escherichia coli. The Xyn10B enzyme was highly active toward birchwood xylan, oat-spelt xylan, and moderately active toward avicel, carboxymethyl cellulose, polygalacturonic acid, lichenan, laminarin, barley--glucan and various p-nitrophenyl monosaccharides. Xyn10B hydrolyzed xylan and xylooligosaccharides to produce xylobiose and xylotriose. The pH optimum of Xyn10B was 5.0, and the optimal temperature was 70°C. The enzyme was stable at 60°C at pH 5.0–6.5 for 1 h without substrate. This is one of a number of xylan-related activities encoded on the large plasmid in C. acetobutylicum ATCC 824.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号