首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual‐based estimates of the degree of inbreeding or parental relatedness from pedigrees provide a critical starting point for studies of inbreeding depression, but in practice wild pedigrees are difficult to obtain. Because inbreeding increases the proportion of genomewide loci that are identical by descent, inbreeding variation within populations has the potential to generate observable correlations between heterozygosity measured using molecular markers and a variety of fitness related traits. Termed heterozygosity‐fitness correlations (HFCs), these correlations have been observed in a wide variety of taxa. The difficulty of obtaining wild pedigree data, however, means that empirical investigations of how pedigree inbreeding influences HFCs are rare. Here, we assess evidence for inbreeding depression in three life‐history traits (hatching and fledging success and juvenile survival) in an isolated population of Stewart Island robins using both pedigree‐ and molecular‐derived measures of relatedness. We found results from the two measures were highly correlated and supported evidence for significant but weak inbreeding depression. However, standardized effect sizes for inbreeding depression based on the pedigree‐based kin coefficients (k) were greater and had smaller standard errors than those based on molecular genetic measures of relatedness (RI), particularly for hatching and fledging success. Nevertheless, the results presented here support the use of molecular‐based measures of relatedness in bottlenecked populations when information regarding inbreeding depression is desired but pedigree data on relatedness are unavailable.  相似文献   

2.
A potential bias in estimation of inbreeding depression when using pedigree relationships to assess the degree of homozygosity for loci under selection is indicated. A comparison of inbreeding coefficients based on either pedigree or genotypic frequencies indicated that, as a result of selection, the inbreeding coefficient based on pedigree might not correspond with the random drift of allelic frequencies. Apparent differences in average levels of both inbreeding coefficients were obtained depending on the genetic model (additive versus dominance, initial allelic frequencies, heritability) and the selection system assumed (no versus mass selection). In the absence of selection, allelic frequencies within a small population change over generations due to random drift, and the pedigree-based inbreeding coefficient gives a proper assessment of the accompanying probability of increased homozygosity within a replicate by indicating the variance of allelic frequencies over replicates. With selection, in addition to random drift, directional change in allelic frequencies is not accounted for by the pedigree-based inbreeding coefficient. This result implies that estimation of inbreeding depression for traits under either direct or indirect selection, estimated by a regression of performance on pedigree-based coefficients, should be carefully interpreted.Deceased  相似文献   

3.
Natal sex‐biased dispersal has long been thought to reduce the risk of inbreeding by spatially separating opposite‐sexed kin. Yet, comprehensive and quantitative evaluations of this hypothesis are lacking. In this study, we quantified the effectiveness of sex‐biased dispersal as an inbreeding avoidance strategy by combining spatially explicit simulations and empirical data. We quantified the extent of kin clustering by measuring the degree of spatial autocorrelation among opposite‐sexed individuals (FM structure). This allowed us to systematically explore how the extent of sex‐biased dispersal, generational overlap, and mate searching distance, influenced both kin clustering, and the resulting inbreeding in the absence of complementary inbreeding avoidance strategies. Simulations revealed that when sex‐biased dispersal was limited, positive FM genetic structure developed quickly and increased as the mate searching distance decreased or as generational overlap increased. Interestingly, complete long‐range sex‐biased dispersal did not prevent the development of FM genetic structure when generations overlapped. We found a very strong correlation between FM genetic structure and both FIS under random mating, and pedigree‐based measures of inbreeding. Thus, we show that the detection of FM genetic structure can be a strong indicator of inbreeding risk. Empirical data for two species with different life history strategies yielded patterns congruent with our simulations. Our study illustrates a new application of spatial genetic autocorrelation analysis that offers a framework for quantifying the risk of inbreeding that is easily extendable to other species. Furthermore, our findings provide other researchers with a context for interpreting observed patterns of opposite‐sexed spatial genetic structure.  相似文献   

4.

Background

Genomic selection makes it possible to reduce pedigree-based inbreeding over best linear unbiased prediction (BLUP) by increasing emphasis on own rather than family information. However, pedigree inbreeding might not accurately reflect loss of genetic variation and the true level of inbreeding due to changes in allele frequencies and hitch-hiking. This study aimed at understanding the impact of using long-term genomic selection on changes in allele frequencies, genetic variation and level of inbreeding.

Methods

Selection was performed in simulated scenarios with a population of 400 animals for 25 consecutive generations. Six genetic models were considered with different heritabilities and numbers of QTL (quantitative trait loci) affecting the trait. Four selection criteria were used, including selection on own phenotype and on estimated breeding values (EBV) derived using phenotype-BLUP, genomic BLUP and Bayesian Lasso. Changes in allele frequencies at QTL, markers and linked neutral loci were investigated for the different selection criteria and different scenarios, along with the loss of favourable alleles and the rate of inbreeding measured by pedigree and runs of homozygosity.

Results

For each selection criterion, hitch-hiking in the vicinity of the QTL appeared more extensive when accuracy of selection was higher and the number of QTL was lower. When inbreeding was measured by pedigree information, selection on genomic BLUP EBV resulted in lower levels of inbreeding than selection on phenotype BLUP EBV, but this did not always apply when inbreeding was measured by runs of homozygosity. Compared to genomic BLUP, selection on EBV from Bayesian Lasso led to less genetic drift, reduced loss of favourable alleles and more effectively controlled the rate of both pedigree and genomic inbreeding in all simulated scenarios. In addition, selection on EBV from Bayesian Lasso showed a higher selection differential for mendelian sampling terms than selection on genomic BLUP EBV.

Conclusions

Neutral variation can be shaped to a great extent by the hitch-hiking effects associated with selection, rather than just by genetic drift. When implementing long-term genomic selection, strategies for genomic control of inbreeding are essential, due to a considerable hitch-hiking effect, regardless of the method that is used for prediction of EBV.  相似文献   

5.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

6.
Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.  相似文献   

7.
Kinship and inbreeding are two major components involved in sexual selection and mating system evolution. However, the mechanisms underlying recognition and discrimination of genetically related or inbred individuals remain unclear. We investigated whether kinship and inbreeding information is related to low‐frequency vocalizations, “booms,” produced by males during their courtship in the lekking houbara bustard (Chlamydotis undulata undulata). Based on a captive breeding program where the pedigree of all males is known, we investigated the similarity of booms’ acoustic parameters among captive males more or less individually inbred and therefore genetically related with each other. In the wild, we investigated the relationship between the spatial distribution of males within leks and the similarity of acoustic parameters of their booms. In the captive population, we found (a) a relationship between the individual inbreeding level of captive males and their vocalization parameters; (b) that kin share similar frequency and temporal characteristics of their vocalizations. In the wild, we found no evidence for spatial structuring of males based on their acoustic parameters, in agreement with previous genetic findings on the absence of kin association within houbara bustard leks. Overall, our results indicate that genetic information potentially related to both the identity and quality of males is contained in their vocalizations.  相似文献   

8.
 We deduce and prove a general formula to approximate the change in frequency of a mutant allele under weak selection, when this allele is introduced in small frequency into a population which was previously at a fixation state. We apply the formula to autosomal genes in partial selfing models and to autosomal as well as sex-linked genes in partial sib mating models. It is shown that the fate of a rare mutant allele depends not only on the selection parameters, the inbreeding coefficient and the reproductive values of the sexes in sex-differentiated populations, but also on coefficients of relatedness between mates. This is interpreted as a kin selection effect caused by inbreeding per se. Received: 3 December 2001 / Revised version: 10 April 2002 / Published online: 19 November 2002 Research supported in part by NSERC of Canada and FCAR of Québec. Mathematics Subject Classification (2000): Primary 60J80, Secondary 92D10, 92D25 Keywords or phrases: Adaptive topography – Partial selfing – Partial sib mating – Kin selection  相似文献   

9.
In this paper I argue (a) that the study of kin selection may be facilitated by looking for influences of inbreeding, which is an important aspect of a population's genetic structure; (b) that in nonhuman primates the level of inbreeding will be largely a function of the rate of migration by individuals, usually only of one sex, between social units or troops; (c) that many primate species live in relatively outbred groups, and that their social structure reflects this; and (d) that extensive social contrasts between bonnet and pigtail macaques reflect evolution by kin selection under different levels of inbreeding.  相似文献   

10.
PETER H. BECKER 《Ibis》2012,154(1):74-84
Mating between close relatives can have deleterious effects on reproductive success or offspring fitness, which should favour the evolution of active or passive inbreeding avoidance mechanisms. In birds, evidence for active inbreeding avoidance by kin‐discriminative mate choice is scarce; many studies describe random mating in relation to kinship and thus support passive inbreeding avoidance by natal dispersal. However, most studies were conducted in island populations of short‐lived passerines with fast alternation of generations. In this study, we present inbreeding estimates based on pedigree data from a 16‐year study in a coastal colony of Common Terns Sterna hirundo, a long‐lived seabird with delayed sexual maturation and low rates of extra‐pair paternity. Incestuous mating was rare (four of 2387 pairs), even if partially accounting for incomplete pedigrees. Although the average relatedness of observed pairs was lower than would be expected from random pairing, the inbreeding coefficient did not differ from random mating. Hence, we found no clear evidence for active inbreeding avoidance by kin‐discriminative mate choice, and the low level of inbreeding seems to be related to the high immigration rate in the colony and thus to be maintained passively by dispersal.  相似文献   

11.
In cooperative breeders, the tension between the opposing forces of kin selection and kin competition is at its most severe. Although philopatry facilitates kin selection, it also increases the risk of inbreeding. When dispersal is limited, extra-pair paternity might be an important mechanism to avoid inbreeding, but evidence for this is equivocal. The red-winged fairy-wren is part of a genus of cooperative breeders with extreme levels of promiscuity and male philopatry, but is unique in that females are also strongly philopatric. Here, we test the hypothesis that promiscuity is an important inbreeding avoidance mechanism when both sexes are philopatric. Levels of extra-pair paternity were substantial (70% of broods), but did not arise through females mating with their helpers, but via extra-group mating. Offspring were more likely to be sired by extra-pair males when the social pair was closely related, and these extra-pair males were genetically less similar to the female than the social male and thus, inbreeding is avoided through extra-pair mating. Females were consistent in their choice of the extra-pair sire over time and preferred early moulting males. Despite neighbouring males often being close kin, they sired 37% of extra-pair offspring. However, females that gained paternity from neighbours were typically less related to them than females that gained paternity further away. Our study is the first to suggest that mating with both closely related social partners and neighbours is avoided. Such sophistication in inbreeding avoidance strategies is remarkable, as the extreme levels of promiscuity imply that social context may provide little cue to relatedness.  相似文献   

12.
Disease-mediated inbreeding depression is a potential cost of living in groups with kin, but its general magnitude in wild populations is unclear. We examined the relationships between inbreeding, survival and disease for 312 offspring, produced by 35 parental pairs, in a large, open population of cooperatively breeding American crows (Corvus brachyrhynchos). Genetic analyses of parentage, parental relatedness coefficients and pedigree information suggested that 23 per cent of parental dyads were first- or second-order kin. Heterozygosity–heterozygosity correlations suggested that a microsatellite-based index of individual heterozygosity predicted individual genome-wide heterozygosity in this population. After excluding birds that died traumatically, survival probability was lower for relatively inbred birds during the 2–50 months after banding: the hazard rate for the most inbred birds was 170 per cent higher than that for the least inbred birds across the range of inbreeding index values. Birds that died with disease symptoms had higher inbreeding indices than birds with other fates. Our results suggest that avoidance of close inbreeding and the absence of inbreeding depression in large, open populations should not be assumed in taxa with kin-based social systems, and that microsatellite-based indices of individual heterozygosity can be an appropriate tool for examining the inbreeding depression in populations where incest and close inbreeding occur.  相似文献   

13.
The ability to recognize close relatives in order to cooperate or to avoid inbreeding is widespread across all taxa. One accepted mechanism for kin recognition in birds is associative learning of visual or acoustic cues. However, how could individuals ever learn to recognize unfamiliar kin? Here, we provide the first evidence for a novel mechanism of kin recognition in birds. Zebra finch (Taeniopygia guttata) fledglings are able to distinguish between kin and non-kin based on olfactory cues alone. Since olfactory cues are likely to be genetically based, this finding establishes a neglected mechanism of kin recognition in birds, particularly in songbirds, with potentially far-reaching consequences for both kin selection and inbreeding avoidance.  相似文献   

14.
Kin selection theory predicts that altruistic behaviors, those that decrease the fitness of the individual performing the behavior but increase the fitness of the recipient, can increase in frequency if the individuals interacting are closely related. Several studies have shown that inbreeding therefore generally increases the effectiveness of kin selection when fitnesses are linear, additive functions of the number of altruists in the family, although with extreme forms of altruism, inbreeding can actually retard the evolution of altruism. These models assume that a constant proportion of the population mates at random and a constant proportion practices some form of inbreeding. In order to investigate the effect of inbreeding on the evolution of altruistic behavior when the mating structure is allowed to evolve, we examined a two-locus model by computer simulation of a diploid case and illustrated the important qualitative features by mathematical analysis of a haploid case. One locus determines an individual's propensity to perform altruistic social behavior and the second locus determines the probability that an individual will mate within its sibship. We assumed positive selection for altruism and no direct selection at the inbreeding locus. We observed that the altruistic allele and the inbreeding allele become positively associated, even when the initial conditions of the model assume independence between these loci. This linkage disequilibrium becomes established, because the altruistic allele increases more rapidly in the inbreeding segment of the population. This association subsequently results in indirect selection on the inbreeding locus. However, the dynamics of this model go beyond a simple "hitch-hiking" effect, because high levels of altruism lead to increased inbreeding, and high degrees of inbreeding accelerate the rate of change of the altruistic allele in the entire population. Thus, the dynamics of this model are similar to those of "runaway" sexual selection, with gene frequency change at the two loci interactively causing rapid evolutionary change.  相似文献   

15.
Because alleles associated with altruistic behaviors can increase in frequency when altruists increase the fitness of closely related individuals, it has been assumed that inbreeding presents the most favorable conditions for the evolution of altruism. Using a family-structured model of kin selection, we varied the proportion of the population mating with sibs and the proportion mating randomly to investigate the hypothesis that inbreeding facilitates the evolution of altruistic behaviors.We partitioned total gene frequency change of the altruistic allele into two components: (1) the change in gene frequency owing to selection within families, or individual selection; this component of selection is always negative and selects against altruistic social behaviors; and (2) the change in gene frequency owing to fitness differences between families, or group selection; this component of selection favors the evolution of altruistic social behaviors. Because inbreeding increases the component of group selection at the expense of individual selection by increasing the between-group variation, it facilitates the spread of the altruistic allele. Computer simulations show that even small amounts of inbreeding (within-sibship mating) significantly increase the rate of gene frequency change.  相似文献   

16.

Background

In the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The aim of this study was to understand the consequences for genetic variability across the genome when genomic information is used to estimate breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced estimated breeding values.

Methods

These consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding, and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on full-sibs of the candidates.

Results

When the information used to estimate breeding values and to constrain rates of inbreeding were either both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its constraint. In contrast, with a genome-based inbreeding constraint and genome-based estimated breeding values, marker frequencies changed, but this change was limited by the inbreeding constraint at the marker position.

Conclusions

To control inbreeding, it is necessary to account for it on the same basis as what is used to estimate breeding values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP estimated breeding values and genome-based inbreeding control with genome-based estimated breeding values.  相似文献   

17.
Offspring born to related parents may show reduced fitness due to inbreeding depression. Although evidence of inbreeding depression has accumulated for a variety of taxa during the past two decades, such analyses remain rare for primate species, probably because of their long generation time. However, inbreeding can have important fitness costs and is likely to shape life-history traits in all living species. As a consequence, selection should have favored inbreeding avoidance via sex-biased dispersal, extra-group paternity, or kin discrimination. In this paper, we review empirical studies on the effects of inbreeding on fitness traits or fitness correlates in primate species. In addition, we report the methods that have been used to detect inbreeding in primate populations, and their development with the improvement of laboratory techniques. We focus particularly on the advantages and disadvantages using microsatellite loci to detect inbreeding. Although the genetic data that are typically available (partial pedigrees, use of microsatellite heterozygosity as an estimate of genomewide inbreeding) tend to impose constraints on analyses, we encourage primatologists to explore the potential effects of inbreeding if they have access to even partial pedigrees or genetic information. Such studies are important because of both the value of basic research in inbreeding depression in the wild and the conservation issues associated with inbreeding, particularly in threatened species, which include more than half of the currently living primate species.  相似文献   

18.
Many essential organelles and endosymbionts exhibit a strict matrilineal pattern of inheritance. The absence of paternal transmission of such extranuclear components is thought to preclude a response to selection on their effects on male viability and fertility. We overturn this dogma by showing that two mechanisms, inbreeding and kin selection, allow mitochondria to respond to selection on both male viability and fertility. Even modest levels of inbreeding allow such a response to selection when there are direct fitness effects of mitochondria on male fertility because inbreeding associates male fertility traits with mitochondrial matrilines. Male viability effects of mitochondria are also selectable whenever there are indirect fitness effects of males on the fitness of their sisters. When either of these effects is sufficiently strong, we show that there are conditions that allow the spread of mitochondria with direct effects that are harmful to females, contrary to standard expectation. We discuss the implications of our findings for the evolution of organelles and endosymbionts and genomic conflict.  相似文献   

19.
Maternal care and female-biased sex ratios are considered by many to be essential prerequisites for the evolution of eusocial behaviors among the hymenoptera. Using population genetic models, I investigate the evolution of genes that have positive maternal effects but negative, direct effects on offspring fitness. I find that, under many conditions, such genes evolve more easily in haplo-diploids than in diplo-diploids. In fact, the conditions are less restrictive than those of kin selection theory, which postulate genes with negative direct effects but positive sib-social effects. For example, the conditions permitting the evolution of maternal effect genes are not affected if females mate multiply, whereas multiple mating reduces the efficacy of kin selection by reducing genetic relatedness within colonies. Inbreeding also differentially facilitates evolution of maternal effect genes in haplo-diploids relative to diplo-diploids, although it does not differentially affect the evolution of sib-altruism genes. Furthermore, when the direct, deleterious pleiotropic effect is restricted to sons, a maternal effect gene can evolve when the beneficial maternal effect is less than half (with inbreeding, much less) of the deleterious effect on sons. For kin selection, however, the sib-social benefits must always exceed the direct costs because genetic relatedness is always less than or equal to 1.0. The results suggest that haplo-diploidy facilitates (1) the evolution of maternal care, and (2) the evolution of maternal effect genes with antagonistic pleiotropic effects on sons. The latter effect may help explain the tendency toward female-biased sex ratios in haplo-diploids, especially those with inbreeding. I conclude that haplo-diploidy not only facilitates the evolution of sister-sister altruism by kin selection but also facilitates the evolution of maternal care and female-biased sex ratios, two prerequisites for eusociality.  相似文献   

20.
The genetic basis of inbreeding avoidance in house mice   总被引:8,自引:0,他引:8  
Animals might be able to use highly polymorphic genetic markers to recognize very close relatives and avoid inbreeding. The major histocompatibility complex (MHC) is thought to provide such a marker because it influences individual scent in a broad range of vertebrates. However, direct evidence is very limited. In house mice (Mus musculus domesticus), the major urinary protein (MUP) gene cluster provides another highly polymorphic scent signal of genetic identity that could underlie kin recognition. We demonstrate that wild mice breeding freely in seminatural enclosures show no avoidance of mates with the same MHC genotype when genome-wide similarity is controlled. Instead, inbreeding avoidance is fully explained by a strong deficit in successful matings between mice sharing both MUP haplotypes. Single haplotype sharing is not a good guide to the identification of full sibs, and there was no evidence of behavioral imprinting on maternal MHC or MUP haplotypes. This study, the first to examine wild animals with normal variation in MHC, MUP, and genetic background, demonstrates that mice use self-referent matching of a species-specific polymorphic signal to avoid inbreeding. Recognition of close kin as unsuitable mates might be more variable across species than a generic vertebrate-wide ability to avoid inbreeding based on MHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号