首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two chromium-resistant bacterial strains, Bacillus cereus S-6 and Ochrobactrum intermedium CrT-1, and two cyanobacterial strains, Oscillatoria sp. and Synechocystis sp., were used in this study. At initial chromate concentrations of 300 and 600 microg K2CrO4 mL(-1), and an inoculum size of 9.6 x 10(7) cells mL(-1), B. cereus S-6 completely reduced Cr(VI), while O. intermedium CrT-1 reduced Cr(VI) by 98% and 70%, respectively after 96 h. At 100 microg K2CrO4 mL(-1), Synechocystis sp. MK(S) and Oscillatoria sp. BJ2 reduced 62.1% and 39.9% of Cr(VI), respectively, at 30 degrees C and pH 8. Application of hexavalent chromate salts adversely affected wheat seedling growth and anatomical characters. However, bacterial inoculation alleviated the toxic effects, as reflected by significant improvements in growth as well as anatomical parameters. Cyanobacterial strains also led to some enhancement of various growth parameters in wheat seedlings.  相似文献   

2.
This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.  相似文献   

3.
Overthelastfewdecadesenvironmentalcontaminationwithheavymetalshasincreaseddrastically .Heavymetalsfoundinwastewatersareharmfultotheenvironmentandtheireffectsonbiolo gicalsystemareverysevere.Anefficientandcheaptreatmentfortheirremovalandreuseofspentmetalsfromwastewaterneedstobedeve loped .Theremovaloftoxicmetalsfromtheenvironmentbymi croorganismshaspotentialasaneffectivemeansofremediatingheavymetalswastes.Microbe basedtechnologiescanprovideanalternativetoconventionalmethodsformetalremoval[1 ] .…  相似文献   

4.
Two chromium-resistant bacterial strains, CrT-1 and CrT-13, tolerant up to 40 mg K2CrO4 ml(-1) on nutrient agar, 25 mg ml(-1) in nutrient broth, and up to 10 mg ml(-1) in acetate-minimal media, were identified as Ochrobactrum intermedium and Brevibacterium sp., respectively, on the basis of 16S rRNA gene sequencing. Uptake of chromate was greater in living cells than in heat-killed on dried cells. CrT-1 reduced 82%, 28% and 16% of Cr(VI) at 100, 500, and 1000 microg ml(-1) after 24 h while CrT-13 reduced 41%, 14% and 9%. Other heavy metals at low concentrations did not affect these reductions. At 150 and 300 microg ml(-1) in an industrial effluent sample Cr(VI) was reduced by 87% and 71%, respectively, with CrT-1 and by 68% and 47% with CrT-13.  相似文献   

5.
Four Cr(VI)-reducing bacterial strains (Ochrobactrum intermedium, CrT-2, CrT-3 and CrT-4) previously isolated from chromium-contaminated sites were inoculated on to seeds of sunflower (Helianthus annuus var SF-187), which were germinated and grown along with non-inoculated controls with chromate salts (300 μg CrCl3 or K2CrO4 ml−1). Severe reduction (20%) in seed germination was observed in Cr(VI) stress. Plant height decreased (36%) with Cr(VI) when compared with chromium-free control, while O. intermedium inoculation resulted a 20% increment in this parameter as compared to non-inoculated chromium-free control. CrT-3 inoculation resulted a 69% increment in auxin content as compared to non-inoculated control. O. intermedium caused 30% decrease in chromium uptake in sunflower plant roots under Cr(VI) stress as compared to chromium-free control plants.  相似文献   

6.
Hexavalent chromium reduction by bacteria from tannery effluent   总被引:2,自引:0,他引:2  
Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.  相似文献   

7.
AIMS: To isolate and analyse chromium-resistant micro-organisms suitable for bioremediation. METHODS AND RESULTS: Strain CG252, with a minimal inhibitory concentration of 500 microg ml(-1), was isolated from contaminated soils and identified as a Streptomyces sp. by 16S rDNA sequence analysis. Assays carried out at various Cr(VI) concentrations indicated that chromium removal was more efficient at lower concentrations and that this activity resulted in accumulation of Cr(III). Atomic adsorption analysis indicated that the chromium removed was not associated with cell mass and activity assays showed that the capacity to reduce Cr(VI) was most probably due to a soluble cytosolic enzyme. Cells grown as biofilms showed enhanced removal of Cr(VI) with respect to planktonic cells, while analysis of growth and colony morphology indicated that Cr(VI) had a toxic effect on this strain. CONCLUSIONS: Streptomyces sp. CG252 tolerated heavy metals and elevated levels of chromium, despite its negative effect on growth and development, and was efficient at removing Cr(VI) by promoting reduction to Cr(III). SIGNIFICANCE AND IMPACT OF THE STUDY: Strain CG252's capacity to tolerate heavy metals and to reduce Cr(VI) to the less toxic Cr(III), especially when forming biofilms, makes it a promising candidate for detoxification of sites containing this heavy metal.  相似文献   

8.

Two chromium-resistant bacterial strains, Bacillus cereus S-6 and Ochrobactrum intermedium CrT-1, and two cyanobacterial strains, Oscillatoria sp. and Synechocystis sp., were used in this study. At initial chromate concentrations of 300 and 600 μg K2CrO4 mL−1, and an inoculum size of 9.6×107 cells mL−1, B. cereus S-6 completely reduced Cr(VI), while O. intermedium CrT-1 reduced Cr(VI) by 98% and 70%, respectively after 96 h. At 100 μg K2CrO4 mL−1, Synechocystis sp. MK(S) and Oscillatoria sp. BJ2 reduced 62.1% and 39.9% of Cr(VI), respectively, at 30°C and pH 8. Application of hexavalent chromate salts adversely affected wheat seedling growth and anatomical characters. However, bacterial inoculation alleviated the toxic effects, as reflected by significant improvements in growth as well as anatomical parameters. Cyanobacterial strains also led to some enhancement of various growth parameters in wheat seedlings.

  相似文献   

9.
Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention. Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates.  相似文献   

10.
Bacterial strains, previously isolated from a chromium-polluted soil, were identified on the basis of Gram reaction and biochemical characteristics (Biolog system). Moreover, chromate MICs, chromate reduction capability, multiple heavy metal tolerance, and antibiotic susceptibility were tested for each isolate. All strains but one were Gram-positive and resistant to high concentrations of chromate. The most Cr(VI)-resistant isolate (22mM) was identified as Corynebacterium hoagii. All Cr(VI)-resistant strains except the isolate ChrC20 were capable of catalyzing the reduction of Cr(VI) to Cr(III), a less toxic and less water-soluble form of chromium. The only isolate Cr(VI)-sensitive, attributed to the Pseudomonas genus, also exhibited Cr(VI)-reduction. Isolates were also screened for the presence of plasmid DNA. The strains ChrC20 and ChrB20 harbored one and two plasmids of high molecular mass, respectively. This approach permitted selection of some bacterial strains, which could be used for bioremediation of Cr(VI)-polluted environments. Received: 21 February 2002 / Accepted: 27 March 2002  相似文献   

11.
Two chromate-resistant filamentous fungi, strains H13 and Ed8, were selected from seven independent fungal isolates indigenous to Cr(VI)-contaminated soil because of their ability to decrease hexavalent chromium levels in the growth medium. Morphophysiological studies identified strain H13 as a Penicillium sp. isolate and Ed8 as an Aspergillus sp. isolate. When incubated in minimal medium with glucose as a carbon source and in the presence of 50 microg/mL Cr(VI), these strains caused complete disappearance of Cr(VI) in the growth medium after about 72 h of incubation. Total chromium concentration in growth medium was constant during culture growth, and no accumulation of chromium in fungal biomass was observed. Quantitative determinations of oxidized and reduced chromium species during the reduction process revealed stoichiometric conversion of Cr(VI) to Cr(III). A decrease in Cr(VI) levels from industrial wastes was also induced by Ed8 or H13 biomass. These results indicate that chromate-resistant filamentous fungi with Cr(VI)-reducing capability could be useful for the removal of Cr(VI) contamination.  相似文献   

12.
Impact of four chromium resistant bacterial strains (S3, S4, S6, and S7) was studied on the different growth parameters of sunflower (Helianthus annuus var SF-187) in chromium free or under chromium stress. Strains used exhibited very high-level resistance to chromate (up to 50 mg ml-1 on nutrient agar and 1-2 mg ml-1 in minimal medium). Application of Cr(VI) salt adversely affected the seed germination, root and shoot length, and fresh weight of seedlings. Bacterial inoculations improved the growth parameters. The effects of Cr(VI) on the different biochemical parameters were also very severe but seedlings inoculated with bacteria showed much improvements as compared to non-inoculated controls. Uptake of Cr(VI) was higher than Cr(III) by the seedlings. Inoculated seedlings contained less chromium than non-inoculated seedlings. Much improvement in the internal region of root and shoot was observed in inoculated plants especially in guard cells.  相似文献   

13.
Uptake, distribution, and speciation of chromium in Brassica juncea   总被引:1,自引:0,他引:1  
Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg(-1) of Cr (III) or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 microg Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affected by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.  相似文献   

14.
Bacillus cereus was used to remove chromium (Cr(VI)) from medium containing tannery wastewater under different conditions. The maximum rate of Cr(VI) removal was attained at a temperature of 37?°C, pH of 7.0-9.0, and biomass of 20 g/L when the initial Cr(VI) concentration was less than 50?mg/L. Under the optimum conditions, the Cr(VI) in tannery wastewater was treated with each cellular component of B. cereus to detect its ability to reduce Cr(VI). The results showed that the removal rate of Cr(VI) for the cell-free extracts could reach 92.70%, which was close to that of the whole cells (96.85%), indicating that the Cr(VI) reductase generated by B.?cereus is primarily intracellular. Additionally, during continuous culture of the B. cereus, the strain showed good consecutive growth and removal ability. After treatment of 20?mg/L Cr(VI) for 48?h, the B. cereus was observed by SEM and TEM-EDX. SEM images showed that the B.?cereus used to treat Cr(VI) grew well and had a uniform cellular size. TEM-EDX analysis revealed large quantities of chromium in the B. cereus cells used to treat Cr(VI). Overall, the results presented herein demonstrate that B. cereus can be used as a new biomaterial to remove Cr(VI) from tannery wastewater.  相似文献   

15.
A chromium (Cr)-resistant bacterium isolated from soil containing 6,000 mg/kg of Cr was identified based on 16S rRNA gene sequence analysis as Delftia, and designated as JD2. Growth of JD2 was accompanied with reduction of Cr(VI) to Cr(III) in liquid medium initially containing 100 mg/L Cr(VI), the maximum concentration allowing growth. JD2 showed NADH/NADPH-dependent reductase activity associated with the soluble fraction of cells. The results suggest that JD2 might be a good candidate for the treatment of highly Cr(VI)-contaminated water and/or industrial effluents. The isolate produced indole-3-acetic acid in the presence and absence of Cr(VI) and showed free-living nitrogen-fixing activity possibly attributable to a V-nitrogenase. JD2 did not counteract the harmful effect of Cr(VI) during leguminous plant growth and nodulation by rhizobial strains but functioned as a “helper” bacterium to enhance the performance of rhizobial inoculant strains during inoculation of alfalfa and clover (used as model plants to study plant growth-promoting activity) in the absence of Cr(VI).  相似文献   

16.
Collection bacterial strains were found to be capable of chromium (VI) reduction although they had not been in contact with chromium compounds before. Strains capable of nitrate respiration could use bichromate ions as a terminal electron acceptor in the absence of competing acceptors. Cr(VI) was reduced to Cr(III) when bichromate was added to the cultural broth whose redox potential reached -140 mV.  相似文献   

17.
Chromium present in the forms of Cr(VI) or Cr(III) in soils. Since the toxicity and mobility of Cr(VI) are higher than those of Cr(III), it would be important to estimate soil Cr(VI) accurately in order to assess the phytotoxicity of Cr. Soil redox potential can influence the distribution of Cr between Cr(VI) and Cr(III) forms, and thus an in situ method which is not affected by the soil redox condition is needed for determining Cr(VI) availability in paddy fields. In this study, the Cu-saturated selective ion exchange resin (DOWEX M4159), serving as an infinite sink, was embedded in soils to extract available Cr(VI) from three representative saturated soils with different amounts of Cr(VI). The results suggested that Cr(VI) reduction occurred in the flooded soils, and the acid environment favored the adsorption and reduction of Cr(VI). There was a significant dose-response relationship between the soil resin-extractable Cr(VI) and the plant height of rice seedlings for test soils. The experimental results suggested that the embedded selective ion exchange resin method could be a suitable in situ method for assessing the phytotoxicity of Cr in flooded soils.  相似文献   

18.
Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. Mineral nutrients such as phosphate (Pi), sulfate and nitrate have been reported to attenuate Cr(VI) toxicity, but the underlying mechanisms remain to be clarified. Here, we show that chromate activates the expression of low-Pi inducible reporter genes AtPT1 and AtPT2 in Arabidopsis thaliana transgenic seedlings. Primary-root growth was inhibited by 60 % in AtPT2::uidA-expressing seedlings upon exposure to 140-μM Cr(VI). However, increasing the Pi and sulfate supply to the seedlings that were experiencing Cr(VI) toxicity completely and partially restored the root growth, respectively. This effect correlated with the Cr(VI)-induced AtPT2::uidA expression being completely reversed by addition of Pi. To evaluate whether the nutrient supply may affect the endogenous level of Cr in plants grown under toxic Cr(VI) levels, the contents of Cr were measured (by ICP-MS analyses) in seedlings treated with Cr and with or without Pi, sulfate or nitrate. It was found that Cr accumulation increases tenfold in plants treated with 140-μM Cr(VI) without modifying the phosphorus concentration in the plant. In contrast, the supply of Pi specifically decreased the Cr content to levels similar to those found in seedlings grown in medium without chromate. Taken together, these results show that in A. thaliana seedlings the uptake of Cr(VI) is reduced by Pi. Moreover, our data indicate that Pi and sulfate supplements may be useful in strategies for handling Cr-contaminated soils.  相似文献   

19.
The Cu-saturated selective ion exchange resin (DOWEX M4195) extraction method was used to investigate the effects of two amendments, 5 and 15% organic matter in the form of hog-dung compost (HC) or cattle-dung compost (CC), on Cr(VI) bioavailability in three soils spiked with various levels of Cr(VI). The results showed that addition of composts could decrease the amounts of resin-extractable Cr(VI) in Cr(VI)-spiked soils, and the CC amendment decreased resin-extractable Cr(VI) more than the HC amendment. The X-ray Absorption Near-edge Structure spectroscopy (XANES) method was used to examine the distribution of Cr(III) and Cr(VI) species in Cr(VI)-spiked soils that were affected by compost amendments, and to elucidate the mechanisms for the decrease of resin-extractable Cr(VI) due to the application of composts. The XANES results suggested that the decrease in the amounts of resin-extractable Cr(VI) after compost addition was mainly due to the reduction of Cr(VI) to Cr(III). The amounts of soil resin-extractable Cr(VI) were also correlated with wheat seedling growth in order to evaluate the effect of compost amendments on decreasing the phytotoxicity of soil Cr(VI). The results showed that there was a sigmoidal relationship between soil resin-extractable Cr(VI) and the plant height of wheat seedlings and the obtained effective concentrations of resin-extractable Cr(VI) resulting in 10 and 50% growth inhibition (EC10 and EC50) were 76 and 191 mg kg−1 respectively. The above results suggested that the resin extraction method was a useful tool for assessing Cr(VI) phytotoxicity and that addition of composts would enhance Cr(VI) reduction to Cr(III) in soils and thus relieve Cr(VI) phytotoxicity.  相似文献   

20.
A comparative study has been made on the sensitivity of the yeast Pichia guilliermondii to Cr (III) and Cr (VI) as well as on the Cr uptake potential at growth-inhibitory concentrations of chromium. The strains used in the study were either isolated from natural sources or obtained from a laboratory strain collection. The results show that most of the natural strains were more tolerant to chromium and were able to grow in the presence of 5 mM Cr (III) or 0.5 mM Cr (VI), that is at concentrations which substantially inhibited the growth of laboratory strains. The cellular Cr content after treatment was similar for both strain types and ranged from 1.2-4.0 mg/g d.w. and 0.4-0.9 mg/g d.w., for Cr (III) and Cr (VI) forms, respectively, however, in one case of a natural strain it reached the value of 10 mg Cr (III)/g dry mass. Natural-source strains were grouped into four groups based on the yeasts' differential response to Cr (III) and Cr (VI). Hexavalent Cr-resistant mutants of a P. giuilliermondii laboratory strain, which revealed markedly changed capabilities of chromium accumulation, were obtained by means of UV-induced mutagenesis. Cr (VI) treatment triggered oversynthesis of riboflavin and the addition of exogenous riboflavin increased P. guilliermondii resistance to both Cr (III) and Cr (VI). Electrophoretic protein profiles revealed the induction and/or suppression of several proteins in response to toxic Cr (VI) levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号