首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Griffin, M. Pamela. Role for anions in pulmonaryendothelial permeability. J. Appl.Physiol. 83(2): 615-622, 1997.-Adrenergic stimulation reduces albumin permeation across pulmonary artery endothelial monolayers and induces changes in cell morphology that aremediated by Cl flux. Wetested the hypothesis that anion-mediated changes in endothelial cellsresult in changes in endothelial permeability. We measured permeationof radiolabeled albumin across bovine pulmonary arterial endothelialmonolayers when the extracellular anion was Cl,Br,I,F, acetate(Ac), gluconate(G), and propionate(Pr). Permeability toalbumin (Palbumin)was calculated before and after addition of 0.2 mM of thephosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), whichreduces permeability. InCl, thePalbumin was 3.05 ± 0.86 × 106 cm/s andfell by 70% with the addition of IBMX. The initialPalbumin was lowest forPr andAc. InitialPalbumin was higher inBr,I,G, andF than inCl. A permeability ratiowas calculated to examine the IBMX effect. The greatest IBMX effect wasseen when Cl was theextracellular anion, and the order among halide anions wasCl > Br > I > F. Although the level ofextracellular Ca2+ concentration([Ca2+]o)varied over a wide range in the anion solutions,[Ca2+]odid not systematically affect endothelial permeability in this system.When Cl was theextracellular anion, varying[Ca2+]ofrom 0.2 to 2.8 mM caused a change in initialPalbumin but no changein the IBMX effect. The anion channel blockers4-acetamido-4-isothiocyanotostilbene-2,2-disulfonic acid(0.25 mM) and anthracene-9-carboxylic acid (0.5 mM) significantly altered initialPalbumin and the IBMXeffect. The anion transport blockers bumetanide (0.2 mM) and furosemide(1 mM) had no such effects. We conclude that extracellular anionsinfluence bovine pulmonary arterial endothelial permeability and thatthe pharmacological profile fits better with the activity of anionchannels than with other anion transport processes.

  相似文献   

2.
Carvalho, Paula, Shane R. Johnson, Nirmal B. Charan.Non-cAMP-mediated bronchial arterial vasodilation in response toinhaled -agonists. J. Appl.Physiol. 84(1): 215-221, 1998.We studied thedose-dependent effects of inhaled isoetharine HCl, a -adrenergicbronchodilator (2.5, 5.0, 10.0, and 20.0 mg), on bronchial blood flow(br) in anesthetized sheep. Isoetharine resulted ina dose-dependent increase in br. With atotal dose of 17.5 mg, br increased from baselinevalues of 22 ± 3.4 (SE) to 60 ± 16 ml/min(P < 0.001), an effect independentof changes in cardiac output and systemic arterial pressure. To furtherstudy whether synthesis of endogenous nitric oxide (NO) affects-agonist-induced increases in br, weadministered isoetharine (20 mg) by inhalation before and after theNO-synthase inhibitorN-nitro-L-argininemethyl ester (L-NAME).Intravenous L-NAME (30 mg/kg) rapidly decreased br by ~80% of baseline,whereas L-NAME via inhalation(10 mg/kg) resulted in a delayed and smaller (~22%) decrease.Pretreatment with L-NAME viaboth routes of administration attenuated bronchial arterialvasodilation after subsequent challenge with isoetharine. We concludethat isoetharine via inhalation increases br in adose-dependent manner and that -agonist-induced relaxation ofvascular smooth muscle in the bronchial vasculature is partiallymediated via synthesis of NO.

  相似文献   

3.
Fitzgerald, Margaret D., Hirofumi Tanaka, Zung V. Tran, andDouglas R. Seals. Age-related declines in maximal aerobic capacityin regularly exercising vs. sedentary women: a meta-analysis. J. Appl. Physiol. 83(1): 160-165, 1997.Our purpose was to determine the relationship between habitualaerobic exercise status and the rate of decline in maximal aerobiccapacity across the adult age range in women. A meta-analytic approachwas used in which mean maximal oxygen consumption(O2 max) values fromfemale subject groups (ages 18-89 yr) were obtained from thepublished literature. A total of 239 subject groups from 109 studiesinvolving 4,884 subjects met the inclusion criteria and werearbitrarily separated into sedentary (groups = 107; subjects = 2,256),active (groups = 69; subjects = 1,717), and endurance-trained (groups = 63; subjects = 911) populations.O2 max averaged 29.7 ± 7.8, 38.7 ± 9.2, and 52.0 ± 10.5 ml · kg1 · min1,respectively, and was inversely related to age within each population (r = 0.82 to 0.87, allP < 0.0001). The rate of decline inO2 max withincreasing subject group age was lowest in sedentary women (3.5ml · kg1 · min1· decade1), greater inactive women (4.4ml · kg1 · min1· decade1), andgreatest in endurance-trained women (6.2ml · kg1 · min1 · decade1)(all P < 0.001 vs. each other). Whenexpressed as percent decrease from mean levels at age ~25 yr, therates of decline inO2 max were similarin the three populations (10.0 to 10.9%/decade). Therewas no obvious relationship between aerobic exercise status and therate of decline in maximal heart rate with age. The results of thiscross-sectional study support the hypothesis that, in contrast to theprevailing view, the rate of decline in maximal aerobic capacity withage is greater, not smaller, in endurance-trained vs. sedentary women.The greater rate of decline inO2 max in endurance-trained populations may be related to their higher values asyoung adults (baseline effect) and/or to greater age-related reductions in exercise volume; however, it does not appear to berelated to a greater rate of decline in maximal heart rate with age.

  相似文献   

4.
Serikov, Vladimir B., E. Heidi Jerome, Neal W. Fleming,Peter G. Moore, Frederick A. Stawitcke, and Norman C. Staub.Airway thermal volume in humans and its relation to body size.J. Appl. Physiol. 83(2): 668-676, 1997.The objective of this study was to investigate the influence ofvolume ventilation(E) andcardiac output () on the temperature of the expiredgas at the distal end of the endotracheal tube in anesthetized humans.In 63 mechanically ventilated adults, we used a step decrease in thehumidity of inspired gas to cool the lungs. After change from humid todry gas ventilation, the temperature of the expired gas decreased. Weevaluated the relationship between the inverse monoexponential timeconstant of the temperature fall (1/) and eitherE or . WhenE wasincreased from 5.67 ± 1.28 to 7.14 ± 1.60 (SD) l/min(P = 0.02), 1/ did not changesignificantly [from 1.25 ± 0.38 to 1.21 ± 0.51 min1,P = 0.81]. In the 11 patients in whom changed during the study period(from 5.07 ± 1.81 to 7.38 ± 2.45 l/min,P = 0.02), 1/ increasedcorrespondingly from 0.89 ± 0.22 to 1.52 ± 0.44 min1(P = 0.003). We calculated the airwaythermal volume (ATV) as the ratio of the measured values to 1/ and related it to the body height (BH):ATV (liters) = 0.086 BH (cm)  9.55 (r = 0.90).

  相似文献   

5.
Hardarson, Thorir, Jon O. Skarphedinsson, and TorarinnSveinsson. Importance of the lactate anion in control ofbreathing. J. Appl. Physiol. 84(2):411-416, 1998.The purpose of this study was to examine theeffects of raising the arterialLa andK+ levels on minute ventilation(E) in rats. EitherLa or KCl solutions wereinfused in anesthetized spontaneously breathing Wistar rats to raisethe respective ion arterial concentration ([La] and[K+]) gradually tolevels similar to those observed during strenuous exercise.E, blood pressure, and heart rate wererecorded continuously, and arterial[La],[K+], pH, and bloodgases were repeatedly measured from blood samples. To prevent changesin pH during the Lainfusions, a solution of sodium lactate and lactic acid was used. Raising [La] to13.2 ± 0.6 (SE) mM induced a 47.0 ± 4.0% increase inE without any concomitant changes ineither pH or PCO2. Raising[K+] to 7.8 ± 0.11 mM resulted in a 20.3 ± 5.28% increase inE without changes in pH. Thus ourresults show that Laitself, apart from lactic acidosis, may be important in increasing E during strenuous exercise, and weconfirm earlier results regarding the role of arterial[K+] in the control ofE during exercise.

  相似文献   

6.
Tyler, Catherine M., Lorraine C. Golland, David L. Evans,David R. Hodgson, and Reuben J. Rose. Changes in maximum oxygenuptake during prolonged training, overtraining, and detraining inhorses. J. Appl. Physiol. 81(5):2244-2249, 1996.Thirteen standardbred horses were trained asfollows: phase 1 (endurance training, 7 wk),phase 2 (high-intensity training, 9 wk),phase 3 (overload training, 18 wk), andphase 4 (detraining, 12 wk). Inphase 3, the horses were divided intotwo groups: overload training (OLT) and control (C). The OLT groupexercised at greater intensities, frequencies, and durations than groupC. Overtraining occurred after 31 wk of training and was defined as asignificant decrease in treadmill run time in response to astandardized exercise test. In the OLT group, there was a significantdecrease in body weight (P < 0.05).From pretraining values of 117 ± 2 (SE)ml · kg1 · min1,maximal O2 uptake(O2 max) increased by15% at the end of phase 1, and when signs of overtraining werefirst seen in the OLT group,O2 max was 29%higher (151 ± 2 ml · kg1 · min1in both C and OLT groups) than pretraining values. There was nosignificant reduction inO2 max until after 6 wk detraining whenO2 max was 137 ± 2 ml · kg1 · min1.By 12 wk detraining, meanO2 max was134 ± 2 ml · kg1 · min1,still 15% above pretraining values. When overtraining developed, O2 max was notdifferent between C and OLT groups, but maximal values forCO2 production (147 vs. 159 ml · kg1 · min1)and respiratory exchange ratio (1.04 vs. 1.11) were lower in the OLTgroup. Overtraining was not associated with a decrease inO2 max and, afterprolonged training, decreases inO2 max occurredslowly during detraining.

  相似文献   

7.
Tanaka, Hirofumi, Christopher A. DeSouza, Pamela P. Jones,Edith T. Stevenson, Kevin P. Davy, and Douglas R. Seals. Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. J. Appl.Physiol. 83(6): 1947-1953, 1997.Using ameta-analytic approach, we recently reported that the rate of declinein maximal oxygen uptake(O2 max) with age inhealthy women is greatest in the most physically active and smallest inthe least active when expressed in milliliters per kilogram per minuteper decade. We tested this hypothesis prospectively underwell-controlled laboratory conditions by studying 156 healthy, nonobesewomen (age 20-75 yr): 84 endurance-trained runners (ET) and 72 sedentary subjects (S). ET were matched across the age range forage-adjusted 10-km running performance. Body mass was positivelyrelated with age in S but not in ET. Fat-free mass was not differentwith age in ET or S. Maximal respiratory exchange ratio and rating ofperceived exertion were similar across age in ET and S, suggestingequivalent voluntary maximal efforts. There was a significant butmodest decline in running mileage, frequency, and speed with advancingage in ET.O2 max(ml · kg1 · min1)was inversely related to age (P < 0.001) in ET (r = 0.82) and S(r = 0.71) and was higher atany age in ET. Consistent with our meta-analysic findings,the absolute rate of decline inO2 max was greater inET (5.7ml · kg1 · min1 · decade1)compared with S (3.2 ml · kg1 · min1 · decade1;P < 0.01), but the relative (%)rate of decline was similar (9.7 vs 9.1%/decade; notsignificant). The greater absolute rate of decline inO2 max in ET comparedwith S was not associated with a greater rate of decline in maximalheart rate (5.6 vs. 6.2beats · min1 · decade1),nor was it related to training factors. The present cross-sectional findings provide additional evidence that the absolute, but not therelative, rate of decline in maximal aerobic capacity with age may begreater in highly physically active women compared with theirsedentary healthy peers. This difference does not appear to be relatedto age-associated changes in maximal heart rate, bodycomposition, or training factors.

  相似文献   

8.
Acclimatization to altitude involves an increase in the acutehypoxic ventilatory response (AHVR). Because low-dose dopamine decreases AHVR and domperidone increases AHVR, the increase in AHVR ataltitude may be generated by a decrease in peripheral dopaminergicactivity. The AHVR of nine subjects was determined with and without aprior period of 8 h of isocapnic hypoxia under each of threepharmacological conditions: 1)control, with no drug administered;2) dopamine (3 µg · min1 · kg1);and 3) domperidone (Motilin, 40 mg).AHVR increased after hypoxia (P  0.001). Dopaminedecreased (P  0.01), and domperidone increased (P  0.005) AHVR. The effect of both drugs on AHVR appearedlarger after hypoxia, an observation supported by a significantinteraction between prior hypoxia and drug in the analysis of variance(P  0.05). Although the increasedeffect of domperidone after hypoxia of 0.40 l · min1 · %saturation1[95% confidence interval (CI) 0.11 to 0.92 l · min1 · %1]did not reach significance, the lower limit for this confidence interval suggests that little of the increase in AHVR after sustained hypoxia was brought about by a decrease in peripheral dopaminergic inhibition.

  相似文献   

9.
Repetitiveisometric tetanic contractions (1/s) of the caninegastrocnemius-plantaris muscle were studied either at optimal length(Lo) or shortlength (Ls;~0.9 · Lo),to determine the effects of initial length on mechanical and metabolicperformance in situ. Respective averages of mechanical and metabolicvariables were(Lo vs.Ls, allP < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension(Po) = 544 vs. 174 (0.38 · Po)g/g, maximal blood flow () = 2.0 vs. 1.4 ml · min1 · g1,and maximal oxygen uptake(O2) = 12 vs. 9 µmol · min1 · g1.Tension at Lodecreased to0.64 · Po over20 min of repetitive contractions, demonstrating fatigue; there were nosignificant changes in tension atLs. In separatemuscles contracting atLo, was set to that measured atLs (1.1 ml · min1 · g1),resulting in decreased O2(7 µmol · min1 · g1),and rapid fatigue, to0.44 · Po. Thesedata demonstrate that 1)muscles at Lohave higher andO2 values than those at Ls;2) fatigue occurs atLo with highO2, adjusting metabolic demand (tension output) to match supply; and3) the lack of fatigue atLs with lowertension, , andO2 suggestsadequate matching of metabolic demand, set low by shortmuscle length, with supply optimized by low preload. Thesedifferences in tension andO2 betweenLo andLs groupsindicate that muscles contracting isometrically at initial lengthsshorter than Loare working under submaximal conditions.

  相似文献   

10.
Isono, Shiroh, Thom R. Feroah, Eric A. Hajduk, Rollin Brant,William A. Whitelaw, and John E. Remmers. Interaction ofcross-sectional area, driving pressure, and airflow of passive velopharynx. J. Appl. Physiol. 83(3):851-859, 1997.Previous studies have shown that, when thepharyngeal muscles are relaxed, the velopharynx is a highly compliantsegment of the pharynx. Thus, under these circumstances,cross-sectional area of the velopharynx (AVP), drivingpressure across the velopharynx (P), and inspiratory airflow(I) willbe mutually interdependent variables. The purpose of the presentinvestigation was to describe the interrelation among these threevariables during inspiration. We studied 15 sleeping patients withobstructive sleep apnea/hypopnea when the pharyngeal muscles wererendered hypotonic by applying continuous positive airway pressure tothe nasal airway.AVP, determined by endoscopic imaging, was significantly greater at onset ofI limitationthan at minimum oropharyngeal pressure(P < 0.01). Snoring was neverobserved duringIlimitation. In a subgroup of six patients, values for P,I, andAVP were obtainedat 0.1-s intervals at various levels of mask pressure. For these sixpatients, the mathematical expressionI = 0.657(AVP/Amax) · P0.332,where Amax ismaximal AVP,described the relationship among the three variables(R2 = 0.962) forflow-limited and non-flow-limited inspirations. The impedance of thepassive velopharynx, defined asP0.33/,was inversely related toAVP and increaseddramatically when AVP was <0.3cm2. In summary, we observed aprogressive decrease inAVP during flow-limited inspiration in patients with obstructive sleep apnea. Thisconstriction of the velopharynx contributes to an increase invelopharyngeal impedance that, in turn, counterbalances the increase inP during flow limitation.

  相似文献   

11.
Nagase, Takahide, Hirotoshi Matsui, Tomoko Aoki, YasuyoshiOuchi, and Yoshinosuke Fukuchi. Lung tissue behavior in the mouseduring constriction induced by methacholine and endothelin-1. J. Appl. Physiol. 81(6):2373-2378, 1996.Recently, mice have been extensively used toinvestigate the pathogenesis of pulmonary disease because appropriatemurine models, including transgenic mice, are being increasinglydeveloped. However, little information about the lung mechanics of miceis currently available. We questioned whether lung tissue behavior andthe coupling between dissipative and elastic processes, hysteresivity(), in mice would be different from those in the other species. Toaddress this question, we investigated whether tissue resistance (Rti)and  in mice would be affected by varying lung volume, constrictioninduced by methacholine (MCh) and endothelin-1 (ET-1), andhigh-lung-volume challenge during induced constriction. From measuredtracheal flow and tracheal and alveolar pressures in open-chest ICRmice during mechanical ventilation [tidal volume = 8 ml/kg,frequency (f) = 2.5 Hz], we calculated lung resistance(RL), Rti, airway resistance(Raw), lung elastance (EL),and  (=2fRti/EL). Underbaseline conditions, increasing levels of end-expiratory transpulmonarypressure decreased Raw and increased Rti. The administration ofaerosolized MCh and intravenous ET-1 increasedRL, Rti, Raw, andEL in a dose-dependent manner.Rti increased from 0.207 ± 0.010 to 0.570 ± 0.058 cmH2O · ml1 · safter 107 mol/kg ET-1(P < 0.01). After inducedconstriction, increasing end-expiratory transpulmonary pressuredecreased Raw. However,  was not affected by changing lung volume,constriction induced by MCh and ET-1, or high-lung-volume challengeduring induced constriction. These observations suggest that1)  is stable in mice regardlessof various conditions, 2) Rti is animportant fraction of RL andincreases after induced constriction, and3) mechanical interdependence mayaffect airway smooth muscle shortening in this species. In mammalianspecies, including mice, analysis of  may indicate that both Rti andEL essentially respond to asimilar degree.

  相似文献   

12.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

13.
Assisted ventilation with pressure support (PSV)or proportional assist (PAV) ventilation has the potential to produceperiodic breathing (PB) during sleep. We hypothesized that PB willdevelop when PSV level exceeds the product of spontaneous tidal volume (VT) and elastance(VTsp · E)but that the actual level at which PB will develop[PSV(PB)] will be influenced by thePCO2 (difference between eupneicPCO2 andCO2 apneic threshold) and by RR[response of respiratory rate (RR) to PSV]. We also wishedto determine the PAV level at which PB develops to assess inherentventilatory stability in normal subjects. Twelve normal subjectsunderwent polysomnography while connected to a PSV/PAV ventilatorprototype. Level of assist with either mode was increased in smallsteps (2-5 min each) until PB developed or the subject awakened.End-tidal PCO2,VT, RR, and airway pressure (Paw) were continuously monitored, and the pressure generated byrespiratory muscle (Pmus) was calculated. The pressure amplification factor (PAF) at the highest PAV level was calculated from[(Paw + Pmus)/Pmus], where Paw is peak Paw  continuous positive airway pressure. PB with central apneas developedin 11 of 12 subjects on PSV. PCO2ranged from 1.5 to 5.8 Torr. Changes in RR with PSV were small andbidirectional (+1.1 to 3.5min1). With use ofstepwise regression, PSV(PB) was significantly correlated withVTsp(P = 0.001), E(P = 0.00009),PCO2 (P = 0.007), and RR(P = 0.006). The final regressionmodel was as follows: PSV(PB) = 11.1 VTsp + 0.3E  0.4 PCO2  0.34 RR  3.4 (r = 0.98). PBdeveloped in five subjects on PAV at amplification factors of1.5-3.4. It failed to occur in seven subjects, despite PAF of upto 7.6. We conclude that 1) aPCO2 apneic threshold exists duringsleep at 1.5-5.8 Torr below eupneicPCO2,2) the development of PB during PSVis entirely predictable during sleep, and3) the inherent susceptibility to PBvaries considerably among normal subjects.

  相似文献   

14.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

15.
Diffusional permeability (P) to sucrose(Psuc) andNa+(PNa+)was determined in specimens of rabbit sternal parietal pericardium,which may be obtained without stripping. Specimens were mounted in anUssing apparatus with 3H-labeledsucrose and22Na+in a luminal (L) or interstitial (I) chamber.Psuc was 2.16 ± 0.44 for LI and 2.63 ± 0.45 (SE) × 105 cm/s for IL,i.e., ~10 times smaller than that previously obtained in strippedspecimens of pleura despite the similarity of intercellular junctionsin pericardium and pleural mesothelium of various species. Thesefindings suggest that previousPsuc wasoverestimated because stripping damages the mesothelium.PNa+ (×105 cm/s) was 7.07 ± 0.71 for LI and 7.37 ± 0.69 × 105 cm/s for IL.Measurements were also done with phospholipids, which are adsorbed onthe luminal side of mesothelium in vivo. With phospholipids in L,Psuc was 0.75 ± 0.10 and 0.65 ± 0.08 andPNa+was 3.80 ± 0.32 and 3.76 ± 0.15 × 105 cm/s for LI andIL, respectively, i.e., smaller than without phospholipids.With phospholipids in I (where they are not adsorbed), Psuc (2.33 ± 0.42 × 105 cm/s) andPNa+(7.01 ± 0.45 × 105 cm/s) were similar tothose values without phospholipids. Hence, adsorbed phospholipidsdecrease P of mesothelium. If themesothelium were scraped away from the specimen,Psuc of theconnective tissue would be 13.2 ± 0.76 × 105 cm/s.Psuc of themesothelium, computed fromPsuc of theunscraped and scraped specimens, corrected for the effect of unstirredlayers (2.54 and 19.4 × 105 cm/s, respectively),was 2.92 and 0.74 × 105 cm/s without and withphospholipids, respectively. Hence, most of the resistance to diffusionof the pericardium is provided by the mesothelium.

  相似文献   

16.
Baile, Elisabeth M., Lu Wang, Lorraine Verburgt, and PeterD. Paré. Bronchial vasodilatory response to ionic andnonionic contrast media. J. Appl.Physiol. 82(3): 841-845, 1997.It has recentlybeen shown that bronchial arterial injection of conventional contrastmedium causes a significant increase in bronchial blood flow(br) and that this response is partially attenuatedafter infusion ofN-nitro-L-arginine(L-NNA). However, the precisemechanism for this increase in br is unknown. Inthis study we examined the effect of bronchial arterial injection ofconventional ionic as well as nonionic contrast media. We measuredbr in nine anesthetized, ventilated, open-chestsheep. br was recorded before (baseline) and at thepeak response to injection of 0.5 ml of either 0.9% saline (control;isosmolar with plasma), Omnipaque 300 (iohexol; nonionic), Conray 66 (sodium iothalamate; ionic), or 50% dextrose (viscouscontrol).

  相似文献   

17.
Smaller lungs in women affect exercise hyperpnea   总被引:2,自引:0,他引:2  
We subjected 29 healthy young women (age: 27 ± 1 yr) with a wide range of fitness levels [maximal oxygenuptake (O2 max): 57 ± 6 ml · kg1 · min1;35-70ml · kg1 · min1]to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age-and height-matched men. The higher maximal workload in highly fit(O2 max > 57 ml · kg1 · min1,n = 14) vs. less-fit(O2 max < 56 ml · kg1 · min1,n = 15) women caused a higher maximalventilation (E) with increased tidal volume (VT)and breathing frequency (fb) atcomparable maximal VT/vitalcapacity (VC). More expiratory flow limitation (EFL; 22 ± 4% ofVT) was also observed duringheavy exercise in highly fit vs. less-fit women, causing higherend-expiratory and end-inspiratory lung volumes and greater usage oftheir maximum available ventilatory reserves.HeO2 (79% He-21%O2) vs. room air exercise trialswere compared (with screens added to equalize external apparatusresistance). HeO2 increasedmaximal expiratory flow rates (20-38%) throughout the range ofVC, which significantly reduced EFL during heavy exercise. When EFL wasreduced with HeO2, VT,fb, andE (+16 ± 2 l/min) weresignificantly increased during maximal exercise. However, in theabsence of EFL (during room air exercise),HeO2 had no effect onE. We conclude that smaller lungvolumes and maximal flow rates for women in general, and especiallyhighly fit women, caused increased prevalence of EFL during heavyexercise, a relative hyperinflation, an increased reliance onfb, and a greater encroachment onthe ventilatory "reserve." Consequently,VT andE are mechanically constrained duringmaximal exercise in many fit women because the demand for highexpiratory flow rates encroaches on the airways' maximum flow-volumeenvelope.

  相似文献   

18.
Barstow, Thomas J., Andrew M. Jones, Paul H. Nguyen, andRichard Casaburi. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.J. Appl. Physiol. 81(4):1642-1650, 1996.We tested the hypothesis that the amplitude ofthe additional slow component ofO2 uptake(O2) during heavy exerciseis correlated with the percentage of type II (fast-twitch) fibers inthe contracting muscles. Ten subjects performed transitions to a workrate calculated to require aO2 equal to 50% betweenthe estimated lactate (Lac) threshold and maximalO2 (50%).Nine subjects consented to a muscle biopsy of the vastus lateralis. Toenhance the influence of differences in fiber type among subjects,transitions were made while subjects were pedaling at 45, 60, 75, and90 rpm in different trials. Baseline O2 was designed to besimilar at the different pedal rates by adjusting baseline work ratewhile the absolute increase in work rate above the baseline was thesame. The O2 response after the onset of exercise was described by a three-exponential model. Therelative magnitude of the slow component at the end of 8-min exercisewas significantly negatively correlated with %type I fibers at everypedal rate (r = 0.64 to 0.83, P < 0.05-0.01). Furthermore,the gain of the fast component forO2 (asml · min1 · W1)was positively correlated with the %type I fibers across pedal rates(r = 0.69-0.83). Increase inpedal rate was associated with decreased relative stress of theexercise but did not affect the relationships between%fiber type and O2parameters. The relative contribution of the slow component was alsosignificantly negatively correlated with maximalO2(r = 0.65), whereas the gainfor the fast component was positively associated(r = 0.68-0.71 across rpm). Theamplitude of the slow component was significantly correlated with netend-exercise Lac at all four pedal rates(r = 0.64-0.84), but Lac was notcorrelated with %type I (P > 0.05).We conclude that fiber type distribution significantly affects both thefast and slow components ofO2 during heavy exerciseand that fiber type and fitness may have both codependent andindependent influences on the metabolic and gas-exchange responses toheavy exercise.

  相似文献   

19.
To simulate theimmediate hemodynamic effect of negative intrathoracic pressure duringobstructive apneas in congestive heart failure (CHF), without inducingconfounding factors such as hypoxia and arousals from sleep, eightawake patients performed, at random, 15-s Mueller maneuvers (MM) attarget intrathoracic pressures of 20 (MM 20) and40 cmH2O (MM 40),confirmed by esophageal pressure, and 15-s breath holds, as apneic timecontrols. Compared with quiet breathing, at baseline, before theseinterventions, the immediate effects [first 5 cardiac cycles(SD), P values refer to MM 40compared with breath holds] of apnea, MM 20, and MM 40 were, for left ventricular (LV) systolic transmural pressure (Ptm), 1.0 ± 1.9, 7.2 ± 3.5, and 11.3 ± 6.8 mmHg(P < 0.01); for systolic bloodpressure (SBP), 2.9 ± 2.6, 5.5 ± 3.4, and 12.1 ± 6.8 mmHg (P < 0.01); and forstroke volume (SV) index, 0.4 ± 2.8, 4.1 ± 2.8, and6.9 ± 2.3 ml/m2(P < 0.001), respectively.Corresponding values over the last five cardiac cycles were for LVPtm6.4 ± 4.4, 5.4 ± 6.6, and 4.5 ± 9.1 mmHg (P < 0.01); for SBP6.9 ± 4.2, 8.2 ± 7.7, and 24.2 ± 6.9 mmHg (P < 0.01); and for SVindex 0.4 ± 2.1, 5.2 ± 2.8, and 9.2 ± 4.8 ml/m2(P < 0.001), respectively.Thus, in CHF patients, the initial hemodynamic response to thegeneration of negative intrathoracic pressure includes an immediateincrease in LV afterload and an abrupt fall in SV. The magnitude ofresponse is proportional to the intensity of the MM stimulus. By theend of a 15-s MM 40, LVPtm falls below baseline values, yet SVand SBP do not recover. Thus, when 40cmH2O intrathoracic pressure issustained, additional mechanisms, such as a drop in LV preload due toventricular interaction, are engaged, further reducing SV. The neteffect of MM 40 was a 33% reduction in SV index (from 27 to 18 ml/min2), and a 21% reductionin SBP (from 121 to 96 mmHg). Obstructive apneas can have adverseeffects on systemic and, possibly, coronary perfusion in CHF throughdynamic mechanisms that are both stimulus and timedependent.

  相似文献   

20.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号