首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the common features shared by neurodegenerative diseases there is the central role played by specific proteins or peptides which accumulate in neurons as insoluble plaques or tangles, containing abnormal amounts of redox-active metal ions, like copper and iron. In the case of transmissible spongiform encephalopathies (TSE), the involved protein is known as "prion protein" (PrP(C)) since "prions" (proteinaceous and infectious) are the agents which make TSE transmissible. It is widely accepted that PrP(C), in its wild-type form, can bind up to six Cu(II) ions, four of them in the so-called "octarepeat domain" and the others in the "fifth (non-octarepeat) binding-site". The latter domain contains two His residues, acting as anchoring sites for Cu(II) ions, and other potential binding residues, such as Lys and Met. While it is widely accepted that Lys residues do not take part in complex-formation, the role of methionines is still debated. In order to shed light on this issue, some peptides have been synthesized, either directly mimicking the sequence of the second half of the fifth binding site of human-PrP(C) (apo-form) or analogues where Met residues have been substituted by n-leucine. In addition, a series of short peptides, containing both His and Met residues in different relative positions, have been investigated, for the sake of comparison. Spectroscopic results, including NMR spectra of systems containing Ni(II) as a probe for the paramagnetic Cu(II) ion, agree on the exclusion of any direct interaction between the sulphur atom of Met residues and the Cu(II) ion already bound to His-imidazole side-chains. However, thermodynamic data show that Met-109 somewhat contributes to stability of complex species and this can be attributed to different electronic and steric effects.  相似文献   

2.
Liu H  Ge H  Peng Y  Xiao P  Xu J 《Biophysical chemistry》2011,155(2-3):74-81
Recently, reversible antagonists of the P2Y(12) receptor have been reported. However, the mechanisms of binding have not been elucidated. To this end, a number of homology models were built by means of three programs from four templates. A consensus model was derived from those initial models. The final model was created by refining the consensus model with molecular dynamics simulations. The agonist and antagonists of P2Y(12) have been docked in the final model. For the agonist, the Arg256, Lys280, and Phe252 are "hot" residues. For the antagonists, the Lys280 and Phe252 are "hot" residues that have hydrogen bonding contacts and π-π interactions, respectively. These results can explain the observations of mutation experiments and can guide the design of new inhibitors.  相似文献   

3.
It has been previously shown that complexation of Cu2+ is essential for effective uptake of Cu2+ by brain tissues and that 67Cu complexed to His is taken up by a high affinity and a low affinity saturable process (Hartter, D. E., and Barnea, A. (1988) J. Biol. Chem. 263, 799-805). Using rat hypothalamic tissue slices, we defined the ligand specificity for these two uptake processes. The effectiveness of stereoisomers or methyl (Me) derivatives of His in facilitating 67Cu uptake by the high affinity process was in this decreasing order: L-His = D-His = Me-3-N-His greater than Me-ester-His greater than Me-alpha-N-His greater than or equal to Me-1-N-His. By the low affinity process it was: L-His = D-His = Me-3-N-His = Me-ester-His = Me-alpha-N-His greater than Me-1-N-His. When facilitation of 67Cu uptake by 14 different amino acids was evaluated using copper:ligand (Cu:L) ratios of 1:2,000 (high affinity process) or 1:2 (low affinity process), His stood out as the most effective. However, when [Cu2+] was 0.1 microM and the Cu:L ratio was increased from 1:2,000 to 1:20,000, Ala, Gly, Lys, Ser, or Thr was each as effective as His; when [Cu2+] was 10 microM and the Cu:L ratio was increased from 1:2 to 1:2,000, Gln, Glu, Gly, Lys, or Ser was each superior to His in facilitating 67Cu uptake. Moreover, by comparison to 67Cu uptake at a Cu:L ratio of 1:2, increasing the ratio attenuated (His) or enhanced (Gln, Glu, Gly, Lys, Ser) 67Cu uptake. These results indicate that 1) coordination of Cu2+ with the 1-N-imidazole and the alpha-amino (but not with the carboxyl) is essential for His facilitation of 67Cu uptake, and 2) the amino acid specificity for uptake of complexed Cu2+ is a function of both [Cu2+] and the molar ratio of copper to amino acid. These results are consistent with coordination of Cu2+ with at least three nitrogens being a primary factor facilitating copper uptake by brain tissue.  相似文献   

4.
Lys49-Phospholipase A2 (Lys49-PLA(2) - EC 3.1.1.4) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. Both MjTX-II from Bothrops moojeni and BthTX-I from Bothrops jararacussu are dimeric in solution and in the crystalline states, and a model for the Ca2+-independent membrane damaging mechanism has been suggested in which flexibility at the dimer interface region permits quaternary structural transitions between "open" and "closed" membrane bound dimer conformations which results in the perturbation of membrane phospholipids and disruption of the bilayer structure. With the aim of gaining insights into the structural determinants involved in protein/lipid association, we report here the crystallization and preliminary X-ray analysis of the (i) MjTX-II/SDS complex at a resolution of 2.78A, (ii) MjTX-II/STE complex at a resolution of 1.8 A and (iii) BthTX-I/DMPC complex at 2.72A. These complexes were crystallized by the hanging drop vapour-diffusion technique in (i) HEPES buffer (pH 7.5) 1.8M ammonium sulfate with 2% (w/v) polyethyleneglycol 400, in (ii) 0.6-0.8 M sodium citrate as the precipitant (pH 6.0-6.5) and in (iii) sodium citrate buffer (pH 5.8) and PEG 4000 and 20% isopropanol, respectively. Single crystals of these complexes have been obtained and X-ray diffraction data have been collected at room temperature using a R-AXIS IV imaging plate system and graphite monochromated Cu Kalpha X-ray radiation generated by a Rigaku RU300 rotating anode generator for (i) and (iii) and using using a Synchrotron Radiation Source (Laboratório Nacional de Luz Sincrotron, LNLS, Campinas, Brazil) for (ii).  相似文献   

5.
l-lysine (Lys) is an essential amino acid that is added to foods and dietary supplements. Lys may interact with mineral nutrients and affect their metabolism. This study examined the effect of dietary Lys supplementation on the bioavailability of copper (Cu) and iron (Fe). Weanling male Sprague-Dawley rats were fed one of five diets (20% casein) for 4 weeks containing normal Cu and Fe (control) or low Cu or Fe without (LCu, LFe) or with (LCu + Lys, LFe + Lys) addition of 1.5% Lys. Final body weights, body weight gains and food consumption of the rats did not differ (P  0.05) among diet groups. Rats fed the low Cu or Fe diets showed changes in nutritional biomarkers compared to control rats, demonstrating reduced Cu and Fe status, respectively. Hematological parameters, serum ceruloplasmin activity and Cu and Fe concentrations in serum, liver, kidney and intestinal mucosa were unaffected (P  0.05) by Lys supplementation. These results indicate that in the context of an adequate protein diet, Lys supplementation at a relatively high level does not affect Cu or Fe bioavailability in rats.  相似文献   

6.
The catalytic rate of wild type, two single (Lys 120-->Leu, Lys 134-->Thr), and one double (Lys 120-->Leu-Lys 134-->Thr) mutants of Xenopus laevis B Cu,Zn superoxide dismutase has been studied by pulse radiolysis as a function of pH. The pH dependence curve of the wild-type enzyme can be deconvoluted by two deprotonation equilibria, at pH 9.3 (pK1) and at pH 11.3 (pK2). Catalytic rate measurements on single and double mutants indicate that pK1 is mainly due to the deprotonation of Lys 120 and Lys 134, with only a minor contribution from other surface basic residues, whereas pK2 is due to titration of the invariant Arg 141, likely coupled to deprotonation of the copper-bound water molecule. Accordingly, Brownian dynamics simulations carried out as a function of pH reproduce well the pH dependence of the catalytic rate, when the experimentally determined pKs are assigned to Lys 120, Lys 134, and Arg 141.  相似文献   

7.
Phospholipases A(2) are components of Bothrops venoms responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids. A class of PLA(2)-like proteins has been described which despite PLA(2) activity on artificial substrate, due to a D49K mutation, is still highly myonecrotic. This work reports the X-ray structure determination of two Lys49-PLA(2)s from Bothrops neuwiedi pauloensis (BnSP-7 and BnSP-6) and, for the first time, the comparison of eight dimeric Lys49-PLA(2)s. This comparison reveals that there are not just two ("open" and "closed") but at least six different conformations. The binding of fatty acid observed in three recent Lys49-PLA(2) structures seems to be independent of their quaternary conformation. Cys29 polarization by Lys122 is not significant for BnSP-7 and BnSP-6 or other structures not bound by fatty acids. These structures may be in an "active" state when nothing is bound to them and the Lys122/Cys29 interactions are weak or absent.  相似文献   

8.
J F Hall  L D Kanbi  R W Strange  S S Hasnain 《Biochemistry》1999,38(39):12675-12680
Type 1 Cu centers in cupredoxins, nitrite reductases, and multi-copper oxidases utilize the same trigonal core ligation to His-Cys-His, with a weak axial ligand generally provided by a Met sulfur. In azurin, an additional axial ligand, a carbonyl oxygen from a Gly, is present. The importance of these axial ligands and in particular the Met has been debated extensively in terms of their role in fine-tuning the redox potential, spectroscopic properties, and rack-induced or entatic state properties of the copper sites. Extensive site-directed mutagenesis of the Met ligand has been carried out in azurin, but the presence of an additional carbonyl oxygen axial ligand has made it difficult to interpret the effects of these substitutions. Here, the axial methionine ligand (Met148) in rusticyanin is replaced with Leu, Gln, Lys, and Glu to examine the effect on the redox potential, acid stability, and copper site geometry. The midpoint redox potential varies from 363 (Met148Lys) to 798 mV (Met148Leu). The acid stability of the oxidized proteins is reduced except for the Met148Gln mutant. The Gln mutant remains blue at all pH values between 2.8 and 8, and has a redox potential of 563 mV at pH 3.2. The optical and rhombic EPR properties of this mutant closely resemble those of stellacyanin, which has the lowest redox potential among single-type 1 copper proteins (185 mV). The Met148Lys mutant exhibits type 2 Cu EPR and optical spectra in this pH range. The Met148Glu mutant exhibits a type 2 Cu EPR spectrum above pH 3 and a mixture of type 1 and type 2 Cu spectra at lower pH. The Met148Leu mutant exhibits the highest redox potential ( approximately 800 mV at pH 3.2) which is similar to the values in fungal laccase and in the type 1 Cu site of ceruloplasmin where this axial ligand is also a Leu.  相似文献   

9.
Wilson disease (WD) and Menkes disease (MNK) are inherited disorders of copper metabolism. The genes that mutate to give rise to these disorders encode highly homologous copper transporting ATPases. We use yeast and mammalian two-hybrid systems, along with an in vitro assay to demonstrate a specific, copper-dependent interaction between the six metal-binding domains of the WD and MNK ATPases and the cytoplasmic copper chaperone HAH1. We demonstrate that several metal-binding domains interact independently or in combination with HAH1p, although notably domains five and six of WDp do not. Alteration of either the Met or Thr residue of the HAH1p MTCXXC motif has no observable effect on the copper-dependent interaction, whereas alteration of either of the two Cys residues abolishes the interaction. Mutation of any one of the HAH1p C-terminal Lys residues (Lys(56), Lys(57), or Lys(60)) to Gly does not affect the interaction, although deletion of the 15 C-terminal residues abolishes the interaction. We show that apo-HAH1p can bind in vitro to copper-loaded WDp, suggesting reversibility of copper transfer from HAH1p to WD/MNKp. The in vitro HAH1/WDp interaction is metalospecific; HAH1 preincubated with Cu(2+) or Hg(+) but not with Zn(2+), Cd(2+), Co(2+), Ni(3+), Fe(3+), or Cr(3+) interacted with WDp. Finally, we model the protein-protein interaction and present a theoretical representation of the HAH1p.Cu.WD/MNKp complex.  相似文献   

10.
DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II).Gly-Gly-His-derived metallopeptides containing D- vs. L-amino acid substitutions in the first peptide position. This examination included studies of Cu(II).D-Arg-Gly-His and Cu(II).D-Lys-Gly-His for comparison to metallopeptides containing L-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II).D/L-Pro-Gly-His and Cu(II).D/L-Pro-Lys-His. Results indicated that L-Arg/Lys to D-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA, whereas the replacement of L-Pro by D-Pro in Cu(II).L-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness observed between the D- vs. L-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the epsilon-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II).Xaa-Xaa'-His metallopeptides with DNA are also discussed.  相似文献   

11.
Triadin is an integral membrane protein of the junctional sarcoplasmic reticulum that binds to the high capacity Ca(2+)-binding protein calsequestrin and anchors it to the ryanodine receptor. The lumenal domain of triadin contains multiple repeats of alternating lysine and glutamic acid residues, which have been defined as KEKE motifs and have been proposed to promote protein associations. Here we identified the specific residues of triadin responsible for binding to calsequestrin by mutational analysis of triadin 1, the major cardiac isoform. A series of deletional fusion proteins of triadin 1 was generated, and by using metabolically labeled calsequestrin in filter-overlay assays, the calsequestrin-binding domain of triadin 1 was localized to a single KEKE motif comprised of 25 amino acids. Alanine mutagenesis within this motif demonstrated that the critical amino acids of triadin binding to calsequestrin are the even-numbered residues Lys(210), Lys(212), Glu(214), Lys(216), Gly(218), Gln(220), Lys(222), and Lys(224). Replacement of the odd-numbered residues within this motif by alanine had no effect on calsequestrin binding to triadin. The results suggest a model in which residues 210-224 of triadin form a beta-strand, with the even-numbered residues in the strand interacting with charged residues of calsequestrin, stabilizing a "polar zipper" that links the two proteins together. This small, highly charged beta-strand of triadin may tether calsequestrin to the junctional face membrane, allowing calsequestrin to sequester Ca(2+) in the vicinity of the ryanodine receptor during Ca(2+) uptake and Ca(2+) release.  相似文献   

12.
Cu, Zn superoxide dismutase protects cells from oxidative damage by removing superoxide radicals in one of the fastest enzyme reactions known. The redox reaction at the active-site Cu ion is rate-limited by diffusion and enhanced by electrostatic guidance. To quantitatively define the electrostatic and mechanistic contributions of sequence-invariant Arg-143 in human Cu, Zn superoxide dismutase, single-site mutants at this position were investigated experimentally and computationally. Rate constants for several Arg-143 mutants were determined at different pH and ionic strength conditions using pulse radiolytic methods and compared to results from Brownian dynamics simulations. At physiological pH, substitution of Arg-143 by Lys caused a 2-fold drop in rate, neutral substitutions (Ile, Ala) reduced the rate about 10-fold, while charge-reversing substitutions (Asp, Glu) caused a 100-fold decrease. Position 143 mutants showed pH dependencies not seen in other mutants. At low pH, the acidic residue mutations exhibited pro-tonation/deprotonation effects. At high pH, all enzymes showed typical decreases in rate except the Lys mutant in which the rate dropped off at an unusually low pH. Increasing ionic strength at acidic pH decreased the rates of the wild-type enzyme and Lys mutant, while the rate of the Glu mutant was unaffected. Increasing ionic strength at higher pH (>10) increased the rates of the Lys and Glu mutants while the rate of the wild-type enzyme was unaffected. Reaction simulations with Brownian dynamics incorporating electrostatic effects tested computational predictability of ionic strength dependencies of the wild-type enzyme and the Lys, Ile, and Glu mutants. The calculated and experimental ionic strength profiles gave similar slopes in all but the Glu mutant, indicating that the electrostatic attraction of the substrate is accurately modeled. Differences between the calculated and experimental rates for the Glu and Lys mutants reflect the mechanistic contribution of Arg-143. Results from this joint analysis establish that, aside from the Cu ligands, Arg-143 is the single most important residue in Cu, Zn superoxide dismutase both electrostatically and mechanistically, and provide an explanation for the evolutionary selection of arginine at position 143. © 1994 Wiley-Liss, Inc.  相似文献   

13.

Background

Potential xeroderma pigmentosum group D (XPD), also called excision repair cross-complimentary group two (ERCC2), Lys751Gln and Asp312Asn polymorphisms have been implicated in gastric cancer risk among different ethnicities.

Methods

We aimed to explore the effect of XPD Lys751Gln and Asp312Asn polymorphisms on the susceptibility to gastric cancer among different ethnicities through a systematic review and meta-analysis. Each initially included article was scored for quality appraisal. Desirable data were extracted and registered into databases. 13 studies were ultimately eligible for the meta-analysis of Lys751Gln polymorphism and 9 studies for the meta-analysis of Asp312Asn polymorphism. We adopted the most probably appropriate genetic model (recessive model) for both Lys751Gln and Asp312Asn polymorphisms. Potential sources of heterogeneity were sought out via subgroup and sensitivity analyses, and publication biases were estimated.

Results

Statistically significant findings were apparently noted in Asians but not in Caucasians for both XPD Lys751Gln and XPD Asp312Asn polymorphisms. A statistically significant finding could be seen in noncardia-type gastric cancer for XPD Lys751Gln polymorphism. A statistically significant finding could also be seen in high quality subgroup, small-and-moderate sample size subgroup, articles published after 2007, or PCR-RFLP genotyping subgroup for XPD Asp312Asn polymorphism.

Conclusions

Our meta-analysis indicates that XPD Gln751Gln (CC) genotype and Asn312Asn (AA) genotype may seem to be more susceptible to gastric cancer in Asian populations but not in Caucasian populations, suggesting that the two genotypes may be important biomarkers of gastric cancer susceptibility for Asian populations, the assumption that needs to be further confirmed in well-designed studies among different ethnicities. Gln751Gln (CC) genotype may also be associated with noncardia-type gastric cancer risk, which should also be confirmed among different ethnicities in the future.  相似文献   

14.
The phospholipid-binding plasma protein beta2-glycoprotein I (beta2-GPI) is the primary antigen recognized by the circulating autoantibodies in patients with the "anti-phospholipid syndrome" (APS). Although heparin is routinely used in the treatment and prophylaxis of APS patients, the primary heparin-binding site within beta2-GPI has not been identified. More importantly, how heparin exerts its beneficial effects in vivo in APS patients has not been deduced at the molecular level. Using an expression/site-directed mutagenesis approach, we now show that the positively charged site that resides in the first domain of beta2-GPI is not the primary heparin-binding site. Rather it is the second positively charged site located within the fifth domain of the protein that also binds to phospholipids. Lys(284), Lys(286), and Lys(287) in this domain are essential for the interaction of beta2-GPI with heparin. These data indicate that beta2-GPI binds to heparin in a relatively specific manner even though the affinity for the interaction is rather low. Lys(317) resides in the center of the high affinity phospholipid-binding site. Surprisingly, heparin at concentrations that can be achieved in vivo during anticoagulation therapy greatly enhances the plasmin-mediated cleavage of the Lys(317)-Thr(318) site in beta2-GPI. Because the cleaved form cannot bind to phospholipids effectively, the combined actions of heparin and plasmin result in a diminished ability of beta2-GPI to recognize phospholipids. This, in turn, decreases the prothrombotic activity of the endogenous circulating anti-beta2-GPI antibodies in the patients. Thus, heparin exerts its beneficial effects in APS patients by at least two distinct mechanisms.  相似文献   

15.
A global view of all core histones in yeast is provided by tandem mass spectrometry of intact histones H2A, H2B, H4, and H3. This allowed detailed characterization of >50 distinct histone forms and their semiquantitative assessment in the deletion mutants gcn5Delta, spt7Delta, ahc1Delta, and rtg2Delta, affecting the chromatin remodeling complexes SAGA, SLIK, and ADA. The "top down" mass spectrometry approach detected dramatic decreases in acetylation on H3 and H2B in gcn5Delta cells versus wild type. For H3 in wild type cells, tandem mass spectrometry revealed a direct correlation between increases of Lys(4) trimethylation and the 0, 1, 2, and 3 acetylation states of histone H3. The results show a wide swing from 10 to 80% Lys(4) trimethylation levels on those H3 tails harboring 0 or 3 acetylations, respectively. Reciprocity between these chromatin marks was apparent, since gcn5Delta cells showed a 30% decrease in trimethylation levels on Lys(4) in addition to a decrease of acetylation levels on H3 in bulk chromatin. Deletion of Set1, the Lys(4) methyltransferase, was associated with the linked disappearance of both Lys(4) methylation and Lys(14) and Lys(18) or Lys(23) acetylation on H3. In sum, we have defined the "basis set" of histone forms present in yeast chromatin using a current mass spectrometric approach that both quickly profiles global changes and directly probes the connectivity of modifications on the same histone.  相似文献   

16.
The interaction of DNA with basic peptides (Lys methyl ester*, Lys2, (Lys)2methyl ester) has been studied by circular dichroism. The changes of the DNA CD spectra in the presence of peptides are interpreted as a transconformation from the B form to the C form of DNA. The presence of Ca++ in the mixture induces a supplementary transconformation. These observations suggest Ca++-basic peptides-DNA complexes as a structural model for chromatin.  相似文献   

17.
Lys49-Phospholipase A2 (Lys49-PLA2) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. With the aim of determining the structural basis for this novel activity, we have solved the crystal structure of myotoxin-II, a Lys49-PLA2 isolated from the venom of Cerrophidion (Bothrops) godmani (godMT-II) at 2.8 A resolution by molecular replacement. The final model has been refined to a final crystallografic residual (Rfactor) of 18.8% (Rfree = 28.2%), with excellent stereochemistry. godMT-II is also monomeric in the crystalline state, and small-angle X-ray scattering results demonstrate that the protein is monomeric in solution under fisicochemical conditions similar to those used in the crystallographic studies.  相似文献   

18.
G Taler  G Navon    O M Becker 《Biophysical journal》1998,75(5):2461-2468
Ionic interactions of cytochrome c play an important role in the electron transfer process. Molecular dynamics simulations of the binding of borate ion, which serves as a model ion, at three different cytochrome c surface sites are performed. This work is motivated by previous NMR studies of cytochrome c in borate solution, which indicate the existence of two types of binding sites, a slow exchange site and a fast exchange site. These two types of binding behavior were observed in the dynamic simulations, offering a molecular interpretation of "loose" and "tight" binding. At the "loose" binding sites (near Lys25/Lys27 and Lys55/Lys73) the ion forms two to three hydrogen bonds to the nearest lysine residue. This binding is transient on the time scale of the simulation, demonstrating the feasibility of fast exchange. At the "tight" binding site (near Lys13/Lys86), on the other hand, the ion becomes integrated into the protein hydrogen bond network and remains there for the duration of the simulation (exemplifying slow exchange). Binding simulations of the ion at the "tight" site of H26Q mutant cytochrome c also showed integration of the ion into the protein's hydrogen bond network. However, this integration differs in details from the binding of the ion to the native protein, in agreement with previous NMR observations.  相似文献   

19.
The cupric complexes of poly(Nε-acetoacetyl-L -lysine), [Lys(Acac)]n′ poly(Nδ-acetoacetyl-L -ornithine), [Orn(Acac)]n′ and poly(Nγ-acetoacetyl-L -diaminobutyric acid), [A2bu-(Acac)]n, as well as of the model compound n-hexyl acetoacetamide, have been investigated by means of absorption, potentiometric, equilibrium dialysis, and CD measurements. While in the complex of the model compound, one chelating group is bound to one cupric ion, in the polymeric complexes two β-ketoamide groups are bound to Cu(II) under the same experimental conditions. The binding constant of cupric ions to the three polymers and the formation constant of the Cu(II)-nhexylacetoacetamide complex have been evluated. Investigation on the chiroptical properties of the three polymeric complexes shows that the peptide backbone does not undergo conformational transitions, remaining α-helical when up to 20% of the side chains are bound to Cu(II). The optical activity of the β-ketoamide chromophores is substantially affected by complex formation and is discussed in terms of asymmetric induction from the chiral backbone.  相似文献   

20.
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; "active" Lys have a pK of 8.9, while "normal" Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号