首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two genes encoding acetoacetyl-CoA thiolase (thiolase I; EC 2.3.1.9), whose localization in peroxisomes was first found with an n-alkane-utilizing yeast, Candida tropicalis, were isolated from the lambda EMBL3 genomic DNA library prepared from the yeast genomic DNA. Nucleotide sequence analysis revealed that both genes contained open reading frames of 1209 bp corresponding to 403 amino acid residues with methionine at the N-terminus, which were named as thiolase IA and thiolase IB. The calculated molecular masses were 41,898 Da for thiolase IA and 41,930 Da for thiolase IB. These values were in good agreement with the subunit mass of the enzyme purified from yeast peroxisomes (41 kDa). There was an extremely high similarity between these two genes (96% of nucleotides in the coding regions and 98% of amino acids deduced). From the amino acid sequence analysis of the purified peroxisomal enzyme, it was shown that thiolase IA and thiolase IB were expressed in peroxisomes at an almost equal level. Both showed similarity to other thiolases, especially to Saccharomyces uvarum cytosolic acetoacetyl-CoA thiolase (65% amino acids of thiolase IA and 64% of thiolase IB were identical with this thiolase). Considering the evolution of thiolases, the C. tropicalis thiolases and S. uvarum cytosolic acetoacetyl-CoA thiolase are supposed to have a common origin. It was noticeable that the carboxyl-terminal regions of thiolases IA and IB contained a putative peroxisomal targeting signal, -Ala-Lys-Leu-COOH, unlike those of other thiolases reported hitherto.  相似文献   

2.
The n-alkane-assimilating diploid yeast, Candida tropicalis, possesses two acetoacetyl-CoA thiolase (Thiolase I) isozymes encoded by one allele: peroxisomal and cytosolic Thiolase Is encoded by both CT-T1A and CT-T1B. To clarify the function of peroxisomal and cytosolic. Thiolase Is, the site-directed mutation leading Thiolase I ΔC6 without a putative C-terminal peroxisomal targeting signal was introduced on CT-T1A locus in the ct-t1bΔ-null mutant. The C-terminus-truncated Thiolase I was active and solely present in the cytosol. Although the ct-t1aΔ/t1bΔ-null mutants showed mevalonate auxotrophy, the mutants having the C-terminus-truncated Thiolase I did not require mevalonate for growth, as did the strains having cytosolic Thiolase I. These results demonstrated that the presence of Thiolase I in the cytoplasm is indispensable for the sterol synthesis in this yeast. It is of greater interest that peroxisomal and cytosolic Thiolase I isozymes, products of the same genes, play different roles in the respective compartments, although further investigations will be necessary to analyze how to be sorted into peroxisomes and the cytosol.  相似文献   

3.
Oeljeklaus S  Fischer K  Gerhardt B 《Planta》2002,214(4):597-607
Following chromatography on hydroxyapatite, the elution profile of the thiolase activity of the glyoxysomal fraction from sunflower (Helianthus annuus L.) cotyledons exhibited two peaks when the enzyme activity was assayed with acetoacetyl-CoA as substrate. Only one of these two activity peaks was detectable when a long-chain thiolase substrate was used in the activity assay. The proteins (thiolase I and thiolase II) underlying the two activity peaks detected with acetoacetyl-CoA were of glyoxysomal origin. They were purified using glyoxysomal matrices as starting material, and biochemically characterized. Thiolase I is an acetoacetyl-CoA thiolase (EC 2.3.1.9) exhibiting activity only towards acetoacetyl-CoA (Km = 11 microM). Its contribution to the total glyoxysomal thiolytic activity towards acetoacetyl-CoA amounted to about 15%. Thiolase II is a 3-oxoacyl-CoA thiolase (EC 2.3.1.16). The activity of the enzyme towards 3-oxoacyl-CoAs increased with increasing chain length of the substrate. Thiolase II exhibited a Km value of 27 microM with acetoacetyl-CoA as substrate. and Km values between 3 and 7 microM with substrates having a carbon chain length from 6 to 16 carbon atoms. The thiolase activity of the glyoxysomes towards acetoacetyl-CoA and 3-oxopalmitoyl-CoA exceeded the glyoxysomal butyryl-CoA and palmitoyl-CoA beta-oxidation rates, respectively, by about 10-fold at all substrate concentrations employed (1-15 microM).  相似文献   

4.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

5.
A G Bodnar  R A Rachubinski 《Gene》1990,91(2):193-199
3-Ketoacyl-coenzyme A thiolase (thiolase) catalyzes the final step of the fatty acid beta-oxidation pathway in peroxisomes. Thiolase is unique among rat liver peroxisomal enzymes in that it is synthesized as a precursor possessing a 26-amino acid (aa) N-terminal extension which is cleaved to generate the mature enzyme. To facilitate further examination of the synthesis, intracellular transport and processing of this enzyme, cDNA clones were selected from a lambda gt11 rat liver library using antiserum raised against peroxisomal thiolase. Upon sequencing several cDNA clones, it was revealed that there are at least two distinct thiolase enzymes localized to rat liver peroxisomes, one identical to the previously published rat liver peroxisomal thiolase (thiolase 1) [Hijikata et al., J. Biol. Chem. 262 (1987) 8151-8158] and a novel thiolase (thiolase 2). The THL2 cDNA possesses a single open reading frame of 1302 nucleotides (nt) encoding a protein of 434 aa (Mr 44790). The coding region of THL2 cDNA exhibits 94.6% nt sequence identity with THL1 and 95.4% identity at the level of aa sequence. Northern-blot analysis indicates that the mRNA encoding thiolase 2 is approx. 1.7 kb in size. The mRNA encoding thiolase 2 is induced approx. twofold upon treatment of rats with the peroxisome-proliferating drug, clofibrate. In contrast, the thiolase 1 mRNA is induced more than tenfold under similar conditions.  相似文献   

6.
Johnson TL  Olsen LJ 《Plant physiology》2003,133(4):1991-1999
Most peroxisomal matrix proteins possess a carboxy-terminal tripeptide targeting signal, termed peroxisomal targeting signal type 1 (PTS1), and follow a relatively well-characterized pathway of import into the organelle. The peroxisomal targeting signal type 2 (PTS2) pathway of peroxisomal matrix protein import is less well understood. In this study, we investigated the mechanisms of PTS2 protein binding and import using an optimized in vitro assay to reconstitute the transport events. The import of the PTS2 protein thiolase differed from PTS1 protein import in several ways. Thiolase import was slower than typical PTS1 protein import. Competition experiments with both PTS1 and PTS2 proteins revealed that PTS2 protein import was inhibited by addition of excess PTS2 protein, but it was enhanced by the addition of PTS1 proteins. Mature thiolase alone, lacking the PTS2 signal, was not imported into peroxisomes, confirming that the PTS2 signal is necessary for thiolase import. In competition experiments, mature thiolase did not affect the import of a PTS1 protein, but it did decrease the amount of radiolabeled full-length thiolase that was imported. This is consistent with a mechanism by which the mature protein competes with the full-length thiolase during assembly of an import complex at the surface of the membrane. Finally, the addition of zinc to PTS2 protein imports increased the level of thiolase bound and imported into the organelles.  相似文献   

7.
The glyoxysomal beta-oxidation system in sunflower (Helianthus annuus L.) cotyledons is distinguished by the coexistence of two different thiolase isoforms, thiolase I and II. So far, this phenomenon has only been described for glyoxysomes from sunflower cotyledons. Thiolase I (acetoacetyl-CoA thiolase, EC 2.3.1.9) recognizes acetoacetyl-CoA only, while thiolase II (3-oxoacyl-CoA thiolase, EC 2.3.1.16) exhibits a more broad substrate specificity towards 3-oxoacyl-CoA esters of different chain length. Here, we report on the cloning of thiolase II from sunflower cotyledons. The known DNA sequence of Cucumis sativus 3-oxoacyl-CoA thiolase was used to generate primers for cloning the corresponding thiolase from sunflower cotyledons. RT-PCR was then used to generate an internal fragment of the sunflower thiolase gene and the termini were isolated using 5'- and 3'-RACE. Full-length cDNA was generated using RT-PCR with sunflower thiolase-specific primers flanking the coding region. The resultant gene encodes a thiolase sharing at least 80% identity with other plant thiolases at the amino acid level. The recombinant sunflower thiolase II was expressed in a bacterial system in an active form and purified to apparent homogeneity in a single step using Ni-NTA agarose chromatography. The enzyme was purified 53.4-fold and had a specific activity of 235 nkat/mg protein. Pooled fractions from the Ni-NTA column resulted in an 83% yield of active enzyme to be used for further characterization.  相似文献   

8.
The potential contribution of thiolimidate formation to the increased kinetic acidity of the alpha-proton of acetyl-CoA in the carbon-carbon bond forming reaction catalyzed by 3-ketoacyl-CoA thiolase (thiolase I) from porcine heart was assessed by chemical modification and isotope exchange experiments. Thiolase is only partially inactivated after the chemical modification of lysine residues by reductive methylation, pyridoxal phosphate, or o-phthaldehyde (specific for vicinal lysine and cysteine). The thiolase-catalyzed formation of acetyl-CoA from acetoacetyl-CoA and CoASH in 18OH2 is not accompanied by the appearance of 18O in the acetyl-CoA product. These experiments effectively rule out participation of thiolimidate formation in the thiolase reaction. Other mechanisms must be employed to facilitate the abstraction of the alpha-proton of acetyl-CoA by thiolase I.  相似文献   

9.
Thiolase is part of the fatty acid oxidation machinery which in plants is located within glyoxysomes or peroxisomes. In cucumber cotyledons, proteolytic modification of thiolase takes place during the transfer of the cytosolic precursor into glyoxysomes prior to the intraorganellar assembly of the mature enzyme. This was shown by size comparison of the in vitro synthesized precursor and the 45 kDa subunit of the homodimeric glyoxysomal form. We isolated a full-length cDNA clone encoding the 48 539 Da precursor of thiolase. This plant protein displayed 40% and 47% identity with the precursor of fungal peroxisomal thiolase and human peroxisomal thiolase, respectively. Compared to bacterial thiolases, the precursor of the plant enzyme was distinguished by an N-terminal extension of 34 amino acid residues. This putative targeting sequence of cucumber thiolase shows similarities with the cleavable presequences of rat peroxisomal thiolase and plant peroxisomal malate dehydrogenase.  相似文献   

10.
The presence of two types of thiolases, acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase, was demonstrated in peroxisomes of n-alkane-grown Candida tropicalis [Kurihara, T., Ueda, M., & Tanaka, A. (1989) J. Biochem. 106, 474-478], while acetoacetyl-CoA thiolase was also shown to be present in cytosol. The activity of the enzyme in cytosol was constant irrespective of culture conditions, while the peroxisomal enzyme was inducibly synthesized in the alkane-grown yeast cells. These results indicate that peroxisomal acetoacetyl-CoA thiolase participates in alkane degradation, while the cytosolic enzyme is associated with other fundamental metabolic processes, probably sterol biosynthesis, because this enzyme can catalyze the first step of the sterol biosynthesis. 3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase, a key regulatory enzyme of sterol biosynthesis, was found to be localized exclusively in microsomes of the alkane-grown yeast cells. These results suggest that yeast peroxisomes do not contribute to sterol biosynthesis, unlike the case of mammalian cells.  相似文献   

11.
Thiolase and NADP-dependent 3-hydroxybutyryl-CoA dehydrogenase from Clostridium kluyveri were purified by ion-exchange chromatography to near homogeneity in a simultaneous, single-step procedure. The yield of both enzymes was greater than 80%. Thiolase was purified approximately 8-fold with sp act 115 units/mg, whereas 3-hydroxybutyryl-CoA dehydrogenase was purified 14-fold with sp act 292 units/mg. Isoelectric points of the enzymes are 7.7 for thiolase and 7.8 for 3-hydroxybutyryl-CoA dehydrogenase. Milligram quantities of each of these enzymes are readily obtained from this fatty acid-producing organism.  相似文献   

12.
Peroxins are proteins required for peroxisome assembly. The cytosolic peroxin Pex20p binds directly to the beta-oxidation enzyme thiolase and is necessary for its dimerization and peroxisomal targeting. The intraperoxisomal peroxin Pex8p has a role in the import of peroxisomal matrix proteins, including thiolase. We report the results of yeast two-hybrid analyses with various peroxins of the yeast Yarrowia lipolytica and characterize more fully the interaction between Pex8p and Pex20p. Coimmunoprecipitation showed that Pex8p and Pex20p form a complex, while in vitro binding studies demonstrated that the interaction between Pex8p and Pex20p is specific, direct, and autonomous. Pex8p fractionates with peroxisomes in cells of a PEX20 disruption strain, indicating that Pex20p is not necessary for the targeting of Pex8p to peroxisomes. In cells of a PEX8 disruption strain, thiolase is mostly cytosolic, while Pex20p and a small amount of thiolase associate with peroxisomes, suggesting the involvement of Pex8p in the import of thiolase after docking of the Pex20p-thiolase complex to the membrane. In the absence of Pex8p, peroxisomal thiolase and Pex20p are protected from the action of externally added protease. This finding, together with the fact that Pex8p is intraperoxisomal, suggests that Pex20p may accompany thiolase into peroxisomes during import.  相似文献   

13.
Rhizomelic Chondrodysplasia Punctata (RCDP) is an autosomal recessive disorder in which plasmalogen biosynthesis and phytanate catabolism are impaired. Peroxisomal structure and the intracellular localization of catalase, the 69 kDa peroxisomal integral membrane protein (PMP), and 3-oxoacyl-CoA thiolase were studied in cultured skin fibroblasts from control subjects and patients with RCDP. A punctate fluorescence pattern characteristic for peroxisomes was seen in control cells incubated with either anti-(catalase), anti-(69 kDa PMP) or anti-(3-oxoacyl- CoA thiolase). Incubation of mutant cells with anti-(catalase) or anti-(69 kDa PMP) resulted in the same pattern. However, when RCDP fibroblasts were incubated with a monoclonal anti-(3-oxoacyl-CoA thiolase) antibody no punctate fluorescence could be observed. Cryosections from control and RCDP cells were examined by electron microscopy using double immunogold labelling. RCDP fibroblasts contained structures indistinguishable from control peroxisomes, the membranes reacting with anti-(69 kDa PMP) and the matrix with anti-(catalase). However, the matrix of RCDP peroxisomes, unlike control peroxisomes, did not react with anti-(3-oxoacyl-CoA thiolase). We conclude that RCDP fibroblasts contain regularly shaped peroxisomes, comparable to control peroxisomes in number as well as in content of catalase and 69 kDa PMP. However, in RCDP peroxisomes the amoung of 3-oxoacyl-CoA thiolase protein proved to be below the limit of detection.  相似文献   

14.
Peb1 is a peroxisome biogenesis mutant isolated in Saccharomyces cerevisiae that is selectively defective in the import of thiolase into peroxisomes but has a normal ability to package catalase, luciferase and acyl-CoA oxidase (Zhang, J. W., C. Luckey, and P. B. Lazarow. 1993. Mol. Biol. Cell. 4:1351-1359). Thiolase differs from these other peroxisomal proteins in that it is targeted by an NH2-terminal, 16- amino acid peroxisomal targeting sequence type 2 (PTS 2). This phenotype suggests that the PEB1 protein might function as a receptor for the PTS2. The PEB1 gene has been cloned by functional complementation. It encodes a 42,320-D, hydrophilic protein with no predicted transmembrane segment. It contains six WD repeats that comprise the entire protein except for the first 55 amino acids. Peb1p was tagged with hemagglutinin epitopes and determined to be exclusively within peroxisomes by digitonin permeabilization, immunofluorescence, protease protection and immuno-electron microscopy (Zhang, J. W., and P. B. Lazarow. 1995. J. Cell Biol. 129:65-80). Peb1p is identical to Pas7p (Marzioch, M., R. Erdmann, M. Veenhuis, and W.-H. Kunau. 1994. EMBO J. 13: 4908-4917). We have now tested whether Peb1p interacts with the PTS2 of thiolase. With the two-hybrid assay, we observed a strong interaction between Peb1p and thiolase that was abolished by deleting the first 16 amino acids of thiolase. An oligopeptide consisting of the first 16 amino acids of thiolase was sufficient for the affinity binding of Peb1p. Binding was reduced by the replacement of leucine with arginine at residue five, a change that is known to reduce thiolase targeting in vivo. Finally, a thiolase-Peb1p complex was isolated by immunoprecipitation. To investigate the topogenesis of Peb1p, its first 56-amino acid residues were fused in front of truncated thiolase lacking the NH2-terminal 16-amino acid PTS2. The fusion protein was expressed in a thiolase knockout strain. Equilibrium density centrifugation and immunofluorescence indicated that the fusion protein was located in peroxisomes. Deletion of residues 6-55 from native Peb1p resulted in a cytosolic location and the loss of function. Thus the NH2-terminal 56-amino acid residues of Peb1p are necessary and sufficient for peroxisomal targeting. Peb1p is found in peroxisomes whether thiolase is expressed or not. These results suggest that Peb1p (Pas7p) is an intraperoxisomal receptor for the type 2 peroxisomal targeting signal.  相似文献   

15.
Rhizomelic Chondrodysplasia Punctata (RCDP) is an autosomal recessive disorder in which plasmalogen biosynthesis and phytanate catabolism are impaired. Peroxisomal structure and the intracellular localization of catalase, the 69 kDa peroxisomal integral membrane protein (PMP), and 3-oxoacyl-CoA thiolase were studied in cultured skin fibroblasts from control subjects and patients with RCDP. A punctate fluorescence pattern characteristic for peroxisomes was seen in control cells incubated with either anti-(catalase), anti-(69 kDa PMP) or anti-(3-oxoacyl-CoA thiolase). Incubation of mutant cells with anti-(catalase) or anti-(69 kDa PMP) resulted in the same pattern. However, when RCDP fibroblasts were incubated with a monoclonal anti-(3-oxoacyl-CoA thiolase) antibody no punctate fluorescence could be observed. Cryosections from control and RCDP cells were examined by electron microscopy using double immunogold labelling. RCDP fibroblasts contained structures indistinguishable from control peroxisomes, the membranes reacting with anti-(69 kDa PMP) and the matrix with anti-(catalase). However, the matrix of RCDP peroxisomes, unlike control peroxisomes, did not react with anti-(3-oxoacyl-CoA thiolase). We conclude that RCDP fibroblasts contain regularly shaped peroxisomes, comparable to control peroxisomes in number as well as in content of catalase and 69 kDa PMP. However, in RCDP peroxisomes the amount of 3-oxoacyl-CoA thiolase protein proved to be below the limit of detection.  相似文献   

16.
Interaction between citrate synthase and thiolase   总被引:1,自引:0,他引:1  
Thiolase, a mitochondrial matrix enzyme which produces CoASAc from fatty acids, is shown to interact with citrate synthase, the mitochondrial matrix enzyme responsible for CoASAc utilization. The interaction is demonstrated in three ways: the two enzymes co-precipitate in polyethylene glycol; thiolase causes a change in the fluorescence anisotropy of labeled citrate synthase; and the two enzymes co-elute in gel permeation chromatography. The interactions are shown to be specific by the use of enzymes not metabolically related to citrate synthase.  相似文献   

17.
Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation   总被引:1,自引:0,他引:1  
Catalase activity was inhibited by aminotriazole administration to rats in order to evaluate the influence of catalase on the peroxisomal fatty acyl-CoA beta-oxidation system. 2 h after the administration of aminotriazole, peroxisomes were prepared from rat liver, and the activities of catalase, the beta-oxidation system and individual enzymes of beta-oxidation (fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase) were determined. Catalase activity was decreased to about 2% of the control. Among the individual enzymes of the beta-oxidation system, thiolase activity was decreased to 67%, but the activities of fatty acyl-CoA oxidase, crotonase and beta-hydroxybutyryl-CoA dehydrogenase were almost unchanged. The activity of the peroxisomal beta-oxidation system was assayed by measuring palmitoyl-CoA-dependent NADH formation, and the activity of the purified peroxisome preparation was found to be almost unaffected by the administration of aminotriazole. The activity of the system in the aminotriazole-treated preparation was, however, significantly decreased to 55% by addition of 0.1 mM H2O2 to the incubation mixture. Hydrogen peroxide (0.1 mM) reduced the thiolase activity of the aminotriazole-treated peroxisomes to approx. 40%, but did not affect the other activities of the system. Thiolase activity of the control preparation was decreased to 70% by addition of hydrogen peroxide (0.1 mM). The half-life of 0.1 mM H2O2 added to the thiolase assay mixture was 2.8 min in the case of aminotriazole-treated peroxisomes, and 4 s in control peroxisomes. The ultraviolet spectrum of acetoacetyl-CoA (substrate of thiolase) was clearly changed by addition of 0.1 mM H2O2 to the thiolase assay mixture without the enzyme preparation; the absorption bands at around 233 nm (possibly due to the thioester bond of acetoacetyl-CoA) and at around 303 nm (due to formation of the enolate ion) were both significantly decreased. These results suggest that H2O2 accumulated in peroxisomes after aminotriazole treatment may modify both thiolase and its substrate, and consequently suppress the fatty acyl-CoA beta-oxidation. Therefore, catalase may protect thiolase and its substrate, 3-ketoacyl-CoA, by removing H2O2, which is abundantly produced during peroxisomal enzyme reactions.  相似文献   

18.
The effects of mevinolin on cytosolic acetoacetyl CoA thiolase activity were studied in wild type Chinese hamster ovary fibroblasts and in CHO cells adapted to growth in high levels of mevinolin. Acetoacetyl CoA thiolase, HMG CoA synthase and HMG CoA reductase activities were elevated in the mevinolin resistant line, KH 2.0. Thiolase activity was also increased when wild type cells were incubated for 5 days with 1 micron mevinolin. These results are consistent with the hypothesis that the regulation of the first three enzymes in the cholesterol biosynthetic pathway is mediated at least in part via a common mechanism.  相似文献   

19.
Acetoacetyl-CoA specific thiolases catalyse the cleavage of acetoacetyl-CoA into two molecules of acetyl-CoA and the synthesis (reverse reaction) of acetoacetyl-CoA. The formation of acetoacetyl-CoA is the first step in cholesterol and ketone body synthesis. In this report we describe the identification of a novel acetoacetyl-CoA thiolase and its purification from isolated rat liver peroxisomes by column chromatography. The enzyme, which is a homotetramer with a subunit molecular mass of 42 kDa, could be distinguished from the cytosolic and mitochondrial acetoacetyl-CoA thiolases by its chromatographic behaviour, kinetic characteristics and partial internal amino-acid sequences. The enzyme did not catalyse the cleavage of medium or long chain 3-oxoacyl-CoAs. The enzyme cross-reacted with polyclonal antibodies raised against cytosolic acetoacetyl-CoA thiolase. The latter property was exploited to confirm the peroxisomal localization of the novel thiolase in subcellular fractionation experiments. The peroxisomal acetoacetyl-CoA thiolase most probably catalyses the first reaction in peroxisomal cholesterol and dolichol synthesis. In addition, its presence in peroxisomes along with the other enzymes of the ketogenic pathway indicates that the ketogenic potential of peroxisomes needs to be re-evaluated.  相似文献   

20.
In the present report we describe a method for the complete purification of native sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCP-2/thiolase) from normal rat liver peroxisomes. The isolation procedure is based on the alteration in chromatographic properties of the enzyme in the presence of low concentrations of CoA. The purified preparation of SCP-2/thiolase consisted of 58- and 46-kDa polypeptides. Peroxisomes prepared freshly from normal rat liver contained three SCP-2/thiolase isoforms, separable by conventional chromatography. Immunochemical, molecular sieving, and chemical cross-linking experiments indicated that these isoforms represent thiolytically active homo- and heterodimeric combinations of the 46- and 58-kDa subunits (2 x 58, 58-46, and 2 x 46-kDa proteins).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号