首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and striatum. Glial cell line-derived neurotrophic factor (GDNF) can effectively promote the differentiation and survival of many types of neurons, especially dopaminergic neurons, suggesting it could be a treatment for PD. Lipid rafts are highly dynamic cell membrane domains that contain numerous signal protein receptors, providing an important platform for signal transduction. Compelling evidence indicates that alterations in lipid rafts are associated with PD, and some studies have reported that GDNF can regulate the expression of caveolin-1, a lipid raft-marker protein. However, the precise effects of GDNF on lipid rafts remain unknown. We developed a cellular PD model, purified detergent-resistant membranes (membrane rafts), and performed proteomic and lipid metabolomics analyses to examine changes in lipid rafts after GDNF treatment. The results showed considerable protein and lipid alterations in response to GDNF, especially altered levels of dopamine-β-hydroxylase, heat shock 70 kDa protein, neural cell adhesion molecule, cytoskeletal proteins, and long-chain polysaturated/unsaturated fatty acids. These findings reveal a new avenue to explore the relationships between GDNF, lipid rafts, and PD and support the hypothesis that GDNF may be a useful treatment for PD.  相似文献   

2.

Background

Parkinson’s disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor dysfunctions. While most PD is sporadic in nature, a significant subset can be linked to either autosomal dominant or recessive mutations. PARK2, encoding the E3 ubiquitin ligase, parkin, is the most frequently mutated gene in autosomal recessive early onset PD. It has recently been reported that PD-associated gene products such as PINK1, α-synuclein, LRRK2, and DJ-1, as well as parkin associate with lipid rafts, suggesting that the dysfunction of these proteins in lipid rafts may be a causal factor of PD. Therefore here, we examined the relationship between lipid rafts-related proteins and parkin.

Results

We identified caveolin-1 (cav-1), which is one of the major constituents of lipid rafts at the plasma membrane, as a substrate of parkin. Loss of parkin function was found to disrupt the ubiquitination and degradation of cav-1, resulting in elevated cav-1 protein level in cells. Moreover, the total cholesterol level and membrane fluidity was altered by parkin deficiency, causing dysregulation of lipid rafts-dependent endocytosis. Further, cell-to-cell transmission of α-synuclein was facilitated by parkin deficiency.

Conclusions

Our results demonstrate that alterations in lipid rafts by the loss of parkin via cav-1 may be a causal factor of PD, and cav-1 may be a novel therapeutic target for PD.
  相似文献   

3.
4.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

5.
Wang C  Liu Z  Huang X 《PloS one》2012,7(2):e32086
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.  相似文献   

6.
The accumulation of aggregate-prone proteins is a major representative of many neurological disorders, including Parkinson's disease (PD) wherein the cellular clearance mechanisms, such as the ubiquitin-proteasome and autophagy pathways are impaired. PD, known to be associated with multiple genetic and environmental factors, is characterized by the aggregation of α-synuclein protein and loss of dopaminergic neurons in midbrain. This disease is also associated with other cardiovascular ailments. Herein, we report our findings from studies on the effect of hyper and hypo-osmotic induced toxicity representing hyper and hypotensive condition as an extrinsic epigenetic factor towards modulation of Parkinsonism, using a genetic model Caenorhabditis elegans (C. elegans). Our studies showed that osmotic toxicity had an adverse effect on α-synuclein aggregation, autophagic puncta, lipid content and oxidative stress. Further, we figure that reduced autophagic activity may cause the inefficient clearance of α-synuclein aggregates in osmotic stress toxicity, thereby promoting α-synuclein deposition. Pharmacological induction of autophagy by spermidine proved to be a useful mechanism for protecting cells against the toxic effects of these proteins in such stress conditions. Our studies provide evidence that autophagy is required for the removal of aggregated proteins in these conditions. Studying specific autophagy pathways, we observe that the osmotic stress induced toxicity was largely associated with atg-7 and lgg-1 dependent autophagy pathway, brought together by involvement of mTOR pathway. This represents a unifying pathway to disease in hyper- and hypo-osmotic conditions within PD model of C. elegans.  相似文献   

7.
Jo Y  Cho WK  Rim Y  Moon J  Chen XY  Chu H  Kim CY  Park ZY  Lucas WJ  Kim JY 《Protoplasma》2011,248(1):191-203
In plants, plasmodesmata (PD) are intercellular channels that function in both metabolite exchange and the transport of proteins and RNAs. Currently, many of the PD structural and regulatory components remain to be elucidated. Receptor-like kinases (RLKs) belonging to a notably expanded protein family in plants compared to the animal kingdom have been shown to play important roles in plant growth, development, pathogen resistance, and cell death. In this study, cell biological approaches were used to identify potential PD-associated RLK proteins among proteins contained within cell walls isolated from rice callus cultured cells. A total of 15 rice RLKs were investigated to determine their subcellular localization, using an Agrobacterium-mediated transient expression system. Of these six PD-associated RLKs were identified based on their co-localization with a viral movement protein that served as a PD marker, plasmolysis experiments, and subcellular localization at points of wall contact between spongy mesophyll cells. These findings suggest potential PD functions in apoplasmic signaling in response to environmental stimuli and developmental inputs.  相似文献   

8.
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized pathologically by abnormal SNCA/α-synuclein protein inclusions in neurons. Impaired lysosomal autophagic degradation of cellular proteins is implicated in PD pathogenesis and progression. Heterozygous GBA mutations, encoding lysosomal GBA/glucocerebrosidase (glucosidase, β, acid), are the greatest genetic risk factor for PD, and reduced GBA and SNCA accumulation are related in PD models. Here we review our recent human brain tissue study demonstrating that GBA deficits in sporadic PD are related to the early accumulation of SNCA, and dysregulation of chaperone-mediated autophagy (CMA) pathways and lipid metabolism.  相似文献   

9.
A global isotopic labeling strategy combined with multidimensional liquid chromatographies and tandem mass spectrometry was used for quantitative proteome analysis of a presymptomatic A53T alpha-synuclein Drosophila model of Parkinson disease (PD). Multiple internal standard proteins at different concentration ratios were spiked into samples from PD-like and control animals to assess quantification accuracy. Two biological replicates isotopically labeled in forward and reverse directions were analyzed. A total of 253 proteins were quantified with a minimum of two identified peptide sequences (for each protein); 180 ( approximately 71%) proteins were detected in both forward and reverse labeling measurements. Twenty-four proteins were differentially expressed in A53T alpha-synuclein Drosophila; up-regulation of troponin T and down-regulation of fat body protein 1 were confirmed by Western blot analysis. Elevated expressions of heat shock protein 70 cognate 3 and ATP synthase are known to be directly involved in A53T alpha-synuclein-mediated toxicity and PD; three up-regulated proteins (muscle LIM protein at 60A, manganese-superoxide dismutase, and troponin T) and two down-regulated proteins (chaoptin and retinal degeneration A) have literature-supported associations with cellular malfunctions. That these variations were observed in presymptomatic animals may shed light on the etiology of PD. Protein interaction network analysis indicated that seven proteins belong to a single network, which may provide insight into molecular pathways underlying PD. Gene Ontology analysis indicated that the dysregulated proteins are primarily associated with membrane, endoplasmic reticulum, actin cytoskeleton, mitochondria, and ribosome. These associations support prior findings in studies of the A30P alpha-synuclein Drosophila model (Xun, Z. Y., Sowell, R. A., Kaufman, T. C., and Clemmer, D. E. (2007) Protein expression in a Drosophila model of Parkinson's disease. J. Proteome Res. 6, 348-357; Xun, Z. Y., Sowell, R. A., Kaufman, T. C., and Clemmer, D. E. (2007) Lifetime proteomic profiling of an A30P alpha-synuclein Drosophila model of Parkinson's disease. J. Proteome Res. 6, 3729-3738) that defects in cellular components such as actin cytoskeleton and mitochondria may contribute to the development of later symptoms.  相似文献   

10.
Parkinson's disease (PD) is generally sporadic but a number of genetic diseases have parkinsonism as a clinical feature. Two dominant genes, α‐synuclein (SNCA) and leucine‐rich repeat kinase 2 (LRRK2), are important for understanding inherited and sporadic PD. SNCA is a major component of pathologic inclusions termed Lewy bodies found in PD. LRRK2 is found in a significant proportion of PD cases. These two proteins may be linked as most LRRK2 PD cases have SNCA‐positive Lewy bodies. Mutations in both proteins are associated with toxic effects in model systems although mechanisms are unclear. LRRK2 is an intracellular signaling protein possessing both GTPase and kinase activities that may contribute to pathogenicity. A third protein, tau, is implicated as a risk factor for PD. We discuss the potential relationship between these genes and suggest a model for PD pathogenesis where LRRK2 is upstream of pathogenic effects through SNCA, tau, or both proteins.  相似文献   

11.
Wang N  Wang Y  Yu G  Yuan C  Ma J 《Neurochemical research》2011,36(11):2169-2175
Parkinson’s disease (PD) is an age-dependent neurodegenerative disorder characterized by dopaminergic neuron loss in substantia nigra. Previous studies have implicated a role of dopamine oxidation in PD. Dopamine oxidation leads to the formation of dopamine quinone, which generates reactive oxygen species and covalently modifies cysteinyl proteins to form quinoprotein adduct. We compared quinoprotein adduct formation and lipid peroxidation in different brain regions of young and old rats. We found a prominent age-dependent accumulation of quinoprotein adducts in the substantia nigra, while no significant change of lipid peroxidation was detected in any brain regions of 2- to 15-month old rats. To determine whether quinoprotein adduct formation correlates with dopamine-induced cytotoxicity, we analyzed dopamine treated SH-SY5Y cells and found a strong correlation between quinoprotein adduct formation and cytotoxicity. Together, our results indicate that quinoprotein adduct formation may play a role in the age-dependent selective vulnerability of dopaminergic neurons in PD.  相似文献   

12.
The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions—the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton’s tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.  相似文献   

13.
ObjectivesAcupuncture stimulation has proven to protect dopaminergic neurons from oxidative damage in animal models of Parkinson''s disease (PD), but it remains unclear about the in situ information of biochemical components in dopaminergic neurons. Here, we aimed to analyse in situ changes of biochemical components and lipid peroxidation levels in dopaminergic neurons in PD mice treated with acupuncture by synchrotron FTIR micro‐spectroscopy technique.Materials and MethodsAbout 9–10‐week‐old C57BL/6 mice were used to establish PD model by intraperitoneal injection of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 30 mg/kg for 5 days). Acupuncture stimulation was performed once a day for 12 days. Behaviour test was determined using the rotarod instrument. Biochemical compositions of dopaminergic neurons in substantia nigra pars compacta were analysed by synchrotron FTIR micro‐spectroscopy technique. The number and ultrastructure of dopaminergic neurons were respectively observed by immunofluorescence and transmission electron microscopy (TEM).ResultsWe found that the number and protein expression of dopaminergic neurons in MPTP‐treated mice were reduced by about half, while that in the mice treated by acupuncture were significantly restored. Acupuncture treatment also restored the motor ability of PD mice. The results of single cell imaging with synchrotron FTIR micro‐spectroscopy technique showed that the proportion of lipid in MPTP treated mice increased significantly. Especially the ratio of CH2 asymmetric stretching and CH3 asymmetric stretching increased significantly, suggesting that MPTP induced lipid peroxidation damage of dopaminergic neurons. It is also supported by the result of TEM, such as mitochondrial swelling or atrophy, loss of mitochondrial crests and mitochondrial vacuolization. Compared with MPTP treated mice, the proportion of lipid in acupuncture treated mice decreased and the mitochondrial structure was restored.ConclusionsAcupuncture can inhibit the level of lipid peroxides in dopaminergic neurons and protect neurons from oxidative damage. The study provides a promising method for in situ analysis of biochemical compositions in PD mice and reveals the mechanism of acupuncture in treating neurodegenerative diseases.

Synchrotron FTIR micro‐spectroscopy technique was used to analyse in situ changes of biochemical components and lipid peroxidation levels in dopaminergic neurons in Parkinson''s disease (PD) mice treated with acupuncture. Results showed that the lipid proportion increased significantly in MPTP induced PD mice, including the ratio of lipid to protein, the ratio of lipid to nucleic acid and the ratio of CH2 asym str to CH3 asym str. In particular, the increase of the ratio of CH2 asym str to CH3 asym str implies the higher level of lipid peroxidation. The acupuncture stimulation at Yanglingquan (GB34) acupoints lowered the lipid proportion in dopaminergic neurons of PD mice brain. Our study successfully assesses acupuncture inhibiting oxidative stress damage in dopaminergic cells by in situ analysis of FTIR micro‐spectroscopy.  相似文献   

14.
Perilipin and ADRP, located on the surface of intracellular lipid droplets, are proposed to be involved in adipocyte lipid metabolism. The aim of the present study was to investigate the effect of PKA and PKC activities on the distribution of perilipin and ADRP in primary cultured adrenal cells, and the role of ERK in PMA- and calphostin C-induced steroidogenesis. Immunofluorescence staining indicated that in addition to p160, a capsular protein of steroidogenic lipid droplets, perilipin and ADRP were localized on the lipid droplet surface. Stimuli such as activation of PKA by db cAMP or inhibition of PKC by calphostin C, which increase corticosterone synthesis in various magnitudes, caused detachment of p160 and perilipin, but not ADRP, from the lipid droplet surface. Activation of PKC by PMA induced increase in corticosterone synthesis, however, it did not affect the distribution of perilipin, p160, or ADRP on the lipid droplet surface, suggesting the presence of mechanisms for promoting sterodiogensis other than causing detachment of lipid droplet surface proteins. We further demonstrated that ERK pathway was involved in PMA-induced steroidogenesis, since PD98059, specific inhibitor of MEK, blocked the increases in steroidogenesis and phosphorylation of ERK caused by PMA, but not by cAMP-PKA. These data indicate that p160, perilipin, and ADRP were all located on the lipid droplet surface in rat adrenal cells. On the basis of its non-responsiveness to lipolytic stimulation, ADRP may be a structural protein of the lipid droplet surface, whereas their immediate response to lipolytic stimuli suggest that perilipin and p160 are functional proteins. PKC regulates adrenal steroidogenesis through ERK cascade, whereas PKA pathway does not involve ERK.  相似文献   

15.
Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.  相似文献   

16.
T cell polarization and redistribution of cellular components are critical to processes such as activation, migration, and potentially HIV infection. Here, we investigate the effects of CD4 engagement on the redistribution and localization of chemokine receptors, CXCR4 and CCR5, adhesion molecules, and lipid raft components including cholesterol, GM1, and glycosyl-phosphatidylinositol (GPI)-anchored proteins. We demonstrate that anti-CD4-coated beads (alpha CD4-B) rapidly induce co-capping of chemokine receptors as well as GPI-anchored proteins and adhesion molecules with membrane cholesterol and lipid rafts on human T cell lines and primary T cells to the area of bead-cell contact. This process was dependent on the presence of cellular cholesterol, cytoskeletal reorganization, and lck signaling. Lck-deficient JCaM 1.6 cells failed to cap CXCR4 or lipid rafts to alpha CD4-B. Biochemical analysis reveals that CXCR4 and LFA-1 are recruited to lipid rafts upon CD4 but not CD45 engagement. Furthermore, we also demonstrate T cell capping of both lipid rafts and chemokine receptors at sites of contact with HIV-infected cells, despite the binding of an HIV inhibitory mAb to CXCR4. We conclude that cell surface rearrangements in response to CD4 engagement may serve as a means to enhance cell-to-cell signaling at the immunological synapse and modulate chemokine responsiveness, as well as facilitate HIV entry and expansion by synaptic transmission.  相似文献   

17.
Subcellular protein localization is a universal feature of eukaryotic cells, and the ubiquity of protein localization in prokaryotic species is now acquiring greater appreciation. Though some targeting anchors are known, the origin of polar and division-site localization remains mysterious for a large fraction of bacterial proteins. Ultimately, the molecular components responsible for such symmetry breaking must employ a high degree of self-organization. Here we propose a novel physical mechanism, based on the two-dimensional curvature of the membrane, for spontaneous lipid targeting to the poles and division site of rod-shaped bacterial cells. If one of the membrane components has a large intrinsic curvature, the geometrical constraint of the plasma membrane by the more rigid bacterial cell wall naturally leads to lipid microphase separation. We find that the resulting clusters of high-curvature lipids are large enough to spontaneously and stably localize to the two cell poles. Recent evidence of localization of the phospholipid cardiolipin to the poles of bacterial cells suggests that polar targeting of some proteins may rely on the membrane's differential lipid content. More generally, aggregates of lipids, proteins, or lipid-protein complexes may localize in response to features of cell geometry incapable of localizing individual molecules.  相似文献   

18.
Actin and myosin are components of the plant cell cytoskeleton that extend from cell to cell through plasmodesmata (PD), but it is unclear how they are organized within the cytoplasmic sleeve or how they might behave as regulatory elements. Early work used antibodies to locate actin and myosin to PD, at the electron microscope level, or to pitfields (aggregations of PD in the cell wall), using immunofluorescence techniques. More recently, a green fluorescent protein (GFP)-tagged plant myosin VIII was located specifically at PD-rich pitfields in cell walls. Application of actin or myosin disrupters may modify the conformation of PD and alter rates of cell-cell transport, providing evidence for a role in regulating PD permeability. Intriguingly, there is now evidence of differentiation between types of PD, some of which open in response to both actin and myosin disrupters, and others which are unaffected by actin disrupters or which close in response to myosin inhibitors. Viruses also interact with elements of the cytoskeleton for both intracellular and intercellular transport. The precise function of the cytoskeleton in PD may change during cell development, and may not be identical in all tissue types, or even in all PD within a single cell. Nevertheless, it is likely that actin- and myosin-associated proteins play a key role in regulating cell-cell transport, by interacting with cargo and loading it into PD, and may underlie the capacity for one-way transport across particular cell and tissue boundaries.  相似文献   

19.
The phase behaviour of total membrane lipid extracts of the blue-green alga Anacystis nidulans is compared with that of the individual lipid classes present in such extracts using fluorescence probe, differential scanning calorimetry, wide-angle X-ray diffraction and freeze-fracture techniques. Marked differences are observed in the properties of the isolated lipids as compared to the total lipid extracts. In particular, purified samples of monogalactosyldiacylglycerol and phosphatidylglycerol form complex high melting-point gel phases on storage which are not found in the membrane extracts. Addition of Mg2+ ions to the extracts is also shown to lead to an extensive phase separation of monogalactosyldiacylglycerol from the extracts. The enthalpy changes associated with phase separations occurring in the lipid extracts are found to be approx. 30% higher than those for the corresponding membranes, suggesting that the presence of other components, such as membrane proteins, may influence the phase behaviour of the lipids. The significance of these observations is discussed in terms of the factors limiting the stability of membrane systems.  相似文献   

20.
The abnormal aggregation of proteins into fibrillar lesions is a neuropathological hallmark of several sporadic and hereditary neurodegenerative diseases. For example, Lewy bodies (LBs) are intracytoplasmic filamentous inclusions that accumulate primarily in subcortical neurons of patients with Parkinson's disease (PD), or predominantly in neocortical neurons in a subtype of Alzheimer's disease (AD) known as the LB variant of AD (LBVAD) and in dementia with LBs (DLB). Aggregated neurofilament subunits and alpha-synuclein are major protein components of LBs, and these inclusions may contribute mechanistically to the degeneration of neurons in PD, DLB and LBVAD. Here we review recent studies of the protein building blocks of LBs, as well as the role LBs play in the onset and progression of PD, DLB and LBVAD. Increased understanding of the protein composition and pathological significance of LBs may provide insight into mechanisms of neuron dysfunction and death in other neurodegenerative disorders characterized by brain lesions containing massive deposits of proteinacious fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号