首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of HDL and LDL is important for the further understanding of atherosclerosis because changes of the protein and lipid moieties occur under pathological conditions. Because destruction of lipids leads to the formation of well-defined products such as lysophospholipids or chlorohydrins, methods that allow their fast and reliable determination would be useful. In this study, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for the analysis of the lipid composition of human lipoproteins. These data were compared with high resolution (31)P-NMR spectroscopy. Differences between LDL and HDL in sphingomyelin and phosphatidylcholine content could be monitored by NMR and mass spectrometry, and differences with respect to the extraction efficiency were found by MALDI-TOF MS. Additionally, treatment of LDL with hypochlorite and phospholipase A(2) resulted in marked changes (formation of chlorohydrines and lysolipids). Lysophosphatidylcholines were detectable by both methods, whereas MALDI-TOF MS failed to detect chlorohydrines of phospholipids.We conclude that MALDI-TOF MS provides rapidly a reliable lipid profile of lipoproteins. However, a previous lipid separation must be performed to detect lipid oxidation products. NMR can be directly applied, but suffers from lower sensitivity, and provides only limited information on fatty acid composition.  相似文献   

2.
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly applied to lipids. However, positional acyl chain analysis of lipids by MALDI was so far scarcely described. In this paper, the fragmentation behavior of phosphatidylethanolamine (PE) is investigated by using post-source decay (PSD) MS. In dependence on the investigated adduct, significant differences could be obtained. It will be shown that in particular the negative ion spectra enable the determination of the individual acyl chains as well as their positions (sn-1 or sn-2). Therefore, MALDI-TOF PSD spectra are a real alternative to more sophisticated MS/MS methods.  相似文献   

3.
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly applied to lipids. However, positional acyl chain analysis of lipids by MALDI was so far scarcely described.In this paper, the fragmentation behavior of phosphatidylethanolamine (PE) is investigated by using post-source decay (PSD) MS. In dependence on the investigated adduct, significant differences could be obtained. It will be shown that in particular the negative ion spectra enable the determination of the individual acyl chains as well as their positions (sn-1 or sn-2). Therefore, MALDI-TOF PSD spectra are a real alternative to more sophisticated MS/MS methods.  相似文献   

4.
Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is increasingly used to characterize (phospho)lipids. However, quantitative MALDI data are often questioned because ion suppression may occur if mixtures are analyzed. Therefore, relative (but no absolute) data are normally derived from the MALDI mass spectra of lipid mixtures. We are particularly interested in the phosphatidylcholine/lysophosphatidylcholine (PC/LPC) ratio because it seems to represent a suitable measure of the inflammatory activity. In this study, different parameters affecting the achievable accuracy of the MALDI-TOF MS determination of the PC/LPC ratio are compared. It will be shown that particularly the applied laser fluence as well as the used solvents influence the accuracies. Using artificial lipid mixtures it will be demonstrated that the PC/LPC ratio can be determined with an accuracy of about ±10% making the MALDI assay comparable to established methods. Finally, it will be shown that the optimized conditions are also useful to determine the PC/LPC ratios in human seminal plasma.  相似文献   

5.
The lipid composition of algae is crucial for numerous structural and physiological aspects, e.g. the integrity of the photosynthetic complexes and the functionality of membrane-embedded processes as the photosynthetic electron transport in thylakoids or the mitochondrial respiration. In this paper the lipid composition of the organic extracts of the green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana are compared by using matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) in combination with thin-layer chromatography (TLC). The combined methods enable quantitative evaluation of the individual lipid classes as well as the determination of the relative acyl compositions. It will be shown that both algae differ in (a) the lipid classes, (b) the relative contribution of the individual lipid classes and (c) the acyl compositions. Differences in the acyl composition concern particularly the mono- and digalactosyl diacylglycerols. Glycerol-trimethylhomoserine and phosphatidylethanolamine are exclusively detected in the C. reinhardtii extracts, whereas phosphatidylcholine is a characteristic lipid of C. meneghiniana. Furthermore, the proportion of the acidic lipids sulfoquinovosyl-diacylglycerol and phosphatidylglycerol is significantly higher in the diatom than in C. reinhardtii.  相似文献   

6.
The analysis of beef lipids is normally based on chromatographic techniques and/or gas chromatography in combination with mass spectrometry (GC/MS). Modern techniques of soft-ionization MS were so far scarcely used to investigate the intact lipids in muscle tissues of beef. The objective of the study was to investigate whether matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry and 31P nuclear magnetic resonance (NMR) spectroscopy are useful tools to study the intact lipid composition of beef. For the MALDI-TOF MS and 31P NMR investigations muscle samples were selected from a feeding experiment with German Simmental bulls fed different diets. Beside the triacylglycerols (TAGs), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI) species the MALDI-TOF mass spectra of total muscle lipids gave also intense signals of cardiolipin (CL) species.The application of different matrix compounds, 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), leads to completely different mass spectra: 9-AA is particularly useful for the detection of (polar) phospholipids, whereas apolar lipids, such as cholesterol and triacylglycerols, are exclusively detected if DHB is used. Finally, the quality of the negative ion mass spectra is much higher if 9-AA is used.  相似文献   

7.
in mass spectrometry have enabled the investigation of various biological systems by directly analyzing diverse sets of biomolecules (i.e., proteins, lipids, and carbohydrates), thus making a significant impact on the life sciences field. Over the past decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely utilized as a rapid and reliable method for the identification of microorganisms. MALDI-TOF MS has come into widespread use despite its relatively low resolving power (full width at half maximum, FWHM: < 5,000) and its incompatibility with tandem MS analysis, features with which other high-resolution mass spectrometers are equipped. Microbial identification is achieved by searching databases containing mass spectra of peptides and proteins extracted from microorganisms of interest, using scoring algorithms to match analyzed spectra with reference spectra. In this paper, we give a brief overview of the diverse applications of rapid and robust MALDI-TOF MS-based techniques for microbial identification in a variety of fields, such as clinical diagnosis and environmental and food monitoring. We also describe the fundamental principles of MALDI-TOF MS. The general specifications of the two major MS-based microbial identification systems available in the global market (BioTyper® and VITEK® MS Plus) and the distribution of these instruments in Republic of Korea are also discussed. The current review provides an understanding of this emerging microbial identification and classification technology and will help bacteriologists and cell biologists take advantage of this powerful technique.  相似文献   

8.
Oxidation processes of lipids are of paramount interest from many viewpoints. For instance, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by oxidation of lipids or free fatty acids. Additionally, many inflammatory diseases are accompanied by lipid oxidation and, therefore, oxidation products are also useful disease (bio)markers. Thus, there is also considerable interest in methods of (oxidized) lipid analysis.Nowadays, soft ionization mass spectrometric (MS) methods are regularly used to study oxidative lipid modifications due to their high sensitivities and the extreme mass resolution. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are increasing. This review aims to summarize the so far available data on MALDI analyses of oxidized lipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids under in vivo conditions, particularly the oxidation of (human) lipoproteins. It is not the aim of this review to praise MALDI as the “best” method but to provide a critical survey of the advantages and drawbacks of this method.  相似文献   

9.
The detailed comparative analysis of sperm lipids could essentially contribute to a better understanding of membrane function in the context of fertilization and, moreover, of sperm preservation. The application of sensitive analytical methods is particularly necessary for endangered species as the available amount of spermatozoa (and, accordingly, extractable lipids) is strongly limited. It will be shown that matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast, simple and sensitive method for the determination of the phospholipid composition of spermatozoa from several ruminantia (cattle, roe deer, Klipspringer) and feloideae species (domestic cat, Siberian tiger, fosa). Characteristic “fingerprints” are obtained from the positive ion spectra that allow the differentiation between both animal groups. In contrast to the lipid extracts of ruminantia spermatozoa which predominantly contain ether lipids including essential amounts of plasmalogens, the more complex phospholipid composition of feloideae spermatozoa is clearly dominated by diacyl phospholipids and contains only marginal amounts of plasmalogens. It will also be shown that the lipid compositions of ejaculated, electroejaculated and cauda epididymal spermatozoa of the same species are very similar and give comparable data. Therefore, the analysis of ejaculated spermatozoa is not an absolute must.  相似文献   

10.
Niemann-Pick disease types A and C, and Gaucher disease are glycolipid storage disorders characterized by the systemic deposition of glycosphingolipids, i.e., sphingomyelin in Niemann-Pick disease types A and C tissues and glucosylceramide in Gaucher disease ones, respectively. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS), we analyzed the sphingolipids in liver and spleen specimens from patients with Niemann-Pick disease types A and C, and Gaucher disease. Crude lipids were extracted from tissue containing 5mg protein with chloroform and methanol. After mild alkaline treatment of the crude lipids, a sphingolipid fraction was prepared and analyzed by MALDI-TOF/MS. The results were as follows: (a) ion peaks with m/z values corresponding to different sphingomyelin and ceramide monohexoside (CMH) species were clearly detected. (b) With sphingosylphosphorylcholine as the internal standard for quantification of sphingomyelin and CMH, the relative peak heights of sphingomyelin and CMH were calculated and plotted versus their contents. The relative peak heights of sphingomyelin and CMH showed linearity between 50 and 1500 ng sphingomyelin content, and between 5 and 150 ng CMH content, respectively. (c) Quantitative analysis revealed the accumulation of sphingomyelin in the liver and spleen specimens from the patients with Niemann-Pick disease types A and C. Striking accumulation of CMH was also detected in the liver and spleen specimens from the patients with Gaucher disease. This investigation indicated that accumulated sphingomyelin and CMH in small amounts of tissues from sphingolipidosis patients can be detected quantatively with the MALDI-TOF/MS method. This method will be useful not only for the diagnosis but also for biochemical pathophysiology evaluation of patients with various sphingolipidosis.  相似文献   

11.
Under the action of free-radical reaction initiators on membrane phospholipids, complex processes are taking place in both hydrophobic and hydrophilic parts of the phospholipids. Realization of these processes results in a mixture consisting of the initial lipids and their peroxidation and fragmentation products. Identification of compounds in such mixtures requires analytical methods of high sensitivity, reproducibility and accuracy to be applied. These properties are characteristic of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method. In the studies of radiation-induced free-radical transformations of phosphatidylglycerol, the MALDI-TOF MS in combination with thin layer chromatography (TLC) has been shown to be able to detect and identify products of free-radical transformations taking place in both hydrophilic and hydrophobic parts of the phospholipid. Thus, the MALDI-TOF MS can serve as a suitable analytical tool to investigate free-radical transformations of lipids.  相似文献   

12.
Alterations in the phospholipid (PL) composition of spermatozoal membranes occur during the fertilization process. Furthermore, membrane lipid composition is of high interest with respect to cryopreservation. The PL and fatty acid compositions of human and boar spermatozoa are compared by using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) in combination with thin-layer chromatography and 31P NMR spectroscopy. The extreme sensitivity of alkenyl-linked PL against acid treatment was used to estimate the plasmalogen content of spermatozoa. Compared with humans, boar spermatozoa are characterized by a lower variability of their PL and fatty acid composition. Additionally, boar spermatozoa contain much higher moieties of alkyl-linked compounds, e.g. 1-palmityl-2-docosapentaenoyl-sn-glycero-3-phosphocholine and 1-palmityl-2-docosahexaenoyl-sn-glycero-3-phosphocholine as well as the corresponding phosphatidylethanolamine (PE), while human spermatozoa are characterized by high contents of diacyl-PL, e.g. 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine. A considerable plasmalogen moiety, for instance 1-palmitenyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine is a typical feature of both, human and boar spermatozoa. It will be shown that these differences in PL composition can be very rapidly and conveniently assessed by MALDI-TOF MS in combination with TLC and also by 31P NMR.  相似文献   

13.
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.  相似文献   

14.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000–20 000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions.  相似文献   

15.
A human leukaemia cell line--HL-60--can be differentiated into neutrophils or macrophages and both differentiation processes are accompanied by changes of the lipid composition. Various methods were described for the extraction of lipids from cellular systems, but only two of them were applied to the HL-60 cell line so far. In this study we compared five selected extraction methods for the lipid extraction from HL-60 cells with regard to their qualitative analysis by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS): chloroform/methanol at volume ratios 2:1 and 1:2, isopropanol/ chloroform, isopropanol/hexane and butanol. In addition, the cholesterol and phospholipid concentrations in organic extracts were measured by colorimetric assays. Results can be summarized as follows: For the analysis of polar phospholipids obtained from HL-60 cells by MALDI-TOF MS, a chlorofom/methanol (1:2) or isopropanol/chloroform mixture or butanol can be applied as extraction systems On the other hand, if one would like to analyze changes in triacylglycerols, then chloroform/methanol (2:1) would be the method of choice.  相似文献   

16.
基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)因其具有快速、准确、高通量等特点在食品微生物检测和临床微生物鉴定领域有广泛的应用。对MALDI-TOF MS数据的预处理和分析是微生物鉴定的关键步骤,通过对数据的处理可以从大量的数据中提取微生物的特征肽或者蛋白信息,并通过有监督和无监督学习方法对这些特征信息进行分类和聚类,从而实现对微生物的鉴定、分型和同源性分析。本文就MALDI-TOF MS鉴定微生物中所应用的数理统计分析方法和数据分析软件进行综述。  相似文献   

17.
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently established as a powerful tool for the analysis of biomolecules. Here, MALDI-TOF MS was used for the detection of (poly-)phosphoinositides (PPI). PPI possess higher molecular weights than other phospholipids and a high phosphorylation-dependent negative charge. Both features affect the MALDI detection limits expressed as the minimum of analyte on the sample plate resulting in a signal-to-noise-ratio of S/N=5. Using 2,5-dihydroxybenzoic acid (DHB) as matrix the detection limit for phosphatidylinositol (PI) is seven times higher than for phosphatidylcholine (PC) and further increases with increasing phosphorylation or in mixtures with other well-detectable phospholipids. For phosphatidylinositol-tris-phosphate (PIP3) in a mixture with PC, the limit is about 20 times higher than for PI. The consequences for the experimental conditions are discussed. It is advisable to pre-separate PPI from biological lipid mixtures prior to the application of MALDI-TOF MS.  相似文献   

18.
Ross P  Hall L  Haff LA 《BioTechniques》2000,29(3):620-6, 628-9
Pooling of DNA samples before genotyping is a valuable means of streamlining large-scale genotyping efforts in disease association studies, single-nucleotide polymorphism (SNP) validation or mutant allele screening programs. In this report, we explore the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantitative analysis of SNPs. The measurements are based on MALDI-TOF MS analysis of primer extension assays performed on standard mixtures of pooled PCR products at several test loci. The inherent high molecular weight resolution of MALDI-TOF MS conveys high specificity and good signal-to-noise ratio for performing accurate quantitation. The methods described maximize the sensitivity and quantitative capacity of MALDI-TOF MS while preserving the throughput and economic advantages of the MALDI-TOF platform. Using the format described, we demonstrate that allele frequencies as low as 5% can be detected quantitatively and unambiguously.  相似文献   

19.
Although the analysis of large biomolecules is the prime application of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS), there is also increasing interest in lipid analysis. Since lipids possess relatively small molecular weights, matrix signals should be as small as possible to avoid overlap with lipid peaks. Although 2,5-dihydroxybenzoic acid (DHB) is an established MALDI matrix, the question whether just this isomer is ideal for lipid analysis was not yet addressed. UV absorptions of all six DHB isomers were determined and their laser desorption spectra recorded. In addition, all isomers were used as matrices to record positive and negative ion mass spectra of selected phospholipids (phosphatidylcholine and -serine): In the order 2,5-, 2,6-, 2,3- and 2,4-DHB, the quality of the positive ion lipid spectra decreases. This correlates well with the decreasing acidity of the applied DHB isomers. The 3,4- and 3,5- isomers give only very weak positive ion signals especially of acidic lipids. In contrast, the most suitable matrices in the negative ion mode are 2,5-, 2,4- and 3,5-DHB. 2,6-DHB does not provide any signal in the negative ion mode due to its marked acidity. Finally, differences in the crystallization behavior of the pure matrix and the matrix/lipid co-crystals were also monitored by atomic force microscopy (AFM): 2,5-DHB gave the smallest crystals and the skinniest layer. It is concluded that basically all DHB isomers can be used as MALDI matrices but the 2,5-isomer represents the most versatile compound. Dedicated to Prof. Dr. Klaus Arnold on the occasion of his 65th birthday.  相似文献   

20.
Few developments in microbiological diagnostics have had such a rapid impact on species level identification of microorganisms as matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Conventional differentiation methods rely on biochemical criteria and require additional pre-testing and lengthy incubation procedures. In comparison, MALDI-TOF MS can identify bacteria and yeast within minutes directly from colonies grown on culture plates. This radically new, methodically simple approach profoundly reduces the cost of consumables and time spent on diagnostics. The reliability and accuracy of the method have been demonstrated in numerous studies and different systems are already commercially available. Novel applications of the system besides microbial species level identification are also being explored. This includes identification of pathogens from positive blood cultures or directly from patient samples, such as urine. Currently, intriguing MALDI-TOF MS developments are being made regarding the phenotypic detection of certain antibiotic resistance mechanisms, e.g., β-lactamases and carbapenemases. This mini review provides an overview of the literature in the field and also includes our own data and experiences gathered from over 4 years of routine MALDI-TOF MS use in a university hospital’s microbiological diagnostics facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号