首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gluconobacter oxydans is an industrially important bacterium that lacks a complete Embden–Meyerhof pathway (glycolysis). The organism instead uses the pentose phosphate pathway to oxidize sugars and their phosphorylated intermediates. However, the lack of glycolysis limits the amount of NADH as electron donor for electron transport phosphorylation. It has been suggested that the pentose phosphate pathway contributes to NADH production. Six enzymes predicted to play central roles in intracellular glucose and gluconate flux were heterologously overproduced in Escherichia coli and characterized to investigate the intracellular flow of glucose and gluconates into the pentose phosphate pathway and to explore the contribution of the pentose phosphate pathway to NADH generation. The key pentose phosphate enzymes glucose 6-phosphate dehydrogenase (Gox0145) and 6-phosphogluconate dehydrogenase (Gox1705) had dual cofactor specificities but were physiologically NADP- and NAD-dependent, respectively. Putative glucose dehydrogenase (Gox2015) was NADP-dependent and exhibited a preference for mannose over glucose, whereas a 2-ketogluconate reductase (Gox0417) displayed dual cofactor specificity for NAD(P)H. Furthermore, a putative gluconokinase and a putative glucokinase were identified. The gluconokinase displayed high activities with gluconate and is thought to shuttle intracellular gluconate into the pentose phosphate pathway. A model for the trafficking of glucose and gluconates into the pentose phosphate pathway and its role in NADH generation is presented. The role of NADPH in chemiosmotic energy conservation is also discussed.  相似文献   

2.
Pathways of glucose catabolism, potentially operational in six strains of obligately aerobic, acidophilic bacteria, including Acidiphilium cryptum strain Lhet2, were investigated by short-term radiorespirometry and enzyme assays. Short-term radiorespirometry was conducted at pH 3.0 with specifically labeled [14C]glucose. The high rate and yield of C-1 oxidized to CO2 indicated that the Entner-Doudoroff, pentose phosphate, or both pathways were operational in all strains. Apparent nonequivalent yields of CO2 from C-1 and estimated CO2 from C-4 (C-1 > C-4) were suggestive of simultaneous glucose catabolism by both pathways in all strains tested. Variation in the relative contribution of the two pathways of glucose catabolism appears to account for observed strain differences. Calculation of the actual percent pathway participation was not feasible. Enzyme assays were completed with crude extracts of glucose-grown cells to substantiate the results obtained by radiorespirometry. The key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase) and the Entner-Doudoroff pathway (2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrase) were present in all strains examined (PW2, Lhet2, KLB, OP, and QBP). However, none of the strains exhibited detectable levels of the key enzyme of the Embden-Meyerhof-Parnas pathway, 6-phosphofructokinase. All strains contained glucose-6-phosphate dehydrogenase and fructose bisphosphate aldolase. The results of the enzyme study supported the contention that the pentose phosphate and Entner-Doudoroff pathways are operational for glucose catabolism in the acidophilic heterotrophs, and that the Embden-Meyerhof-Parnas pathway is apparently absent.  相似文献   

3.
The activity of the key enzymes of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, transketolase) was determined in cell-free homogenates of Candida lipolytica 695 and Candida tropicalis 303 growing on different carbon sources. The activity of these enzymes remained almost the same in the course of growth of both cultures. The activity of the enzymes differed only slightly in the cells metabolizing hexadecane and glucose. The activity of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the cell-free homogenates of C. tropicalis 303 was twice as high as in the cells of C. lipolytica 695. The activity of transketolase was the same in both cultures. The main role of the pentose phosphate pathway is presumed to consist not in catabolism of the carbon source, but in biosynthesis of pentoses and other important intermediates.  相似文献   

4.
By using inhibitors and stimulators of different metabolic pathways the interdependence of the pentose phosphate cycle and lipogenesis in isolated fat-cells was studied. Rotenone, which is known to inhibit electron transport in the respiratory chain, blocked glucose breakdown at the site of pyruvate dehydrogenase. Consequently, because of the lack of acetyl-CoA, fatty acid synthesis was almost abolished. A concomitant decrease in pentose phosphate-cycle activity was observed. Phenazine methosulphate stimulated pentose phosphate-cycle activity about five- to ten-fold without a considerable effect on fatty acid synthesis. The influence of rotenone on both the pentose phosphate cycle and lipogenesis could be overcome by addition of phenazine methosulphate, indicating that rotenone has no direct effect on these pathways. The decreased rate of the pentose phosphate cycle in the presence of rotenone therefore has to be considered as a consequence of decreased fatty acid synthesis. The rate of glucose catabolism via the pentose phosphate cycle in adipocytes appears to be determined by the requirement of NADPH for lipogenesis. Treatment of cells with 6-aminonicotinamide caused an accumulation of 6-phosphogluconate, indicating an inhibition of 6-phosphogluconate dehydrogenase. The rate of glucose metabolism via the pentose phosphate cycle as well as the rate of fatty acid synthesis, however, was not affected by 6-aminonicotinamide treatment and could still be stimulated by addition of insulin. Since even in cells from starved animals, in which the pentose phosphate-cycle activity is extremely low, no accumulation of 6-phosphogluconate was observed, it is concluded that the control of this pathway is achieved by the rate of regeneration of NADP at the site of glucose 6-phosphate dehydrogenase.  相似文献   

5.
Mutants of Pseudomonas aeruginosa, strain PAO, have been isolated that are unable to grow on mannitol, glucose, gluconate, or 2-ketogluconate, cut that exhibit wild-type growth on pyruvate, lactate, citrate, succinate, or acetate. Although some of these mutants were also unable to grow on glycerol, the mutations formed a single linkage group by quantitative transductional analysis with phage F116 on glucose minimal agar medium. Cell extracts of all mutant strains were either lacking or severely deficient in 6-phosphogluconate dehydratase activity. Glu+ transductants derived from mutant strains that retained the wild-type ability for growth at the expense of glycerol also regained the ability to grow on all C-6 compounds. Although a role for the pentose phosphate pathway in the catabolism of C6 substrates was not found, a functional Entner-Doudoroff pathway appears to be essential for the catabolism of mannitol, glucose, gluconate, and 2-ketogluconate.  相似文献   

6.
Recently, Corynebacterium glutamicum has been shown to exhibit gluconate bypass activity, with two key enzymes, glucose dehydrogenase (GDH) and gluconate kinase, that provides an alternate route to 6-phosphogluconate formation. In this study, gene disruption analysis was used to examine possible metabolic functions of three proteins encoded by open reading frames having significant sequence similarity to GDH of Bacillus subtilis. Chromosomal in-frame deletion of three genes (NCgl0281, NCgl2582, and NCgl2053) encoding putative NADP+-dependent oxidoreductases led to the absence of GDH activity and correlated with increased specific glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities. This finding suggested that enhanced carbon flux from glucose was directed toward the oxidative pentose phosphate (PP) pathway, when the mutant was cultivated with 6 % glucose. Consequently, the mutant showed 72.4 % increased intracellular NADPH and 66.3 % increased extracellular l-ornithine production. The enhanced activities of the oxidative PP pathway in the mutant explain both the increased intracellular NADPH and the high extracellular concentration of l-ornithine. Thus, the observed metabolic changes in this work corroborate the importance of NADPH in l-ornithine production from C. glutamicum.  相似文献   

7.
Pathways of Carbohydrate Metabolism in Microcyclus Species   总被引:1,自引:1,他引:0       下载免费PDF全文
Radiorespirometric and enzymatic studies were conducted to determine primary and secondary pathways of carbohydrate catabolism in Microcyclus aquaticus and M. flavus. M. aquaticus catabolizes both glucose and gluconate mainly via the Entner-Doudoroff and pentose phosphate pathways with some concurrent participation of the Embden-Meyerhof pathway. M. flavus, however, oxidizes glucose mainly via the Embden-Meyerhof pathway and gluconate via the Entner-Doudoroff pathway with some simultaneous operation of the pentose phosphate pathway. Both of the organisms showed evidence of the tricarboxylic acid cycle as a secondary pathway for the oxidation of carbohydrates.  相似文献   

8.
The aim of this work was to examine the extent to which the oxidative steps of the pentose phosphate pathway in the cytosol contribute to the provision of reductant for biosynthetic reactions. Maize (Zea mays L.) contains at least two loci (pgd1 and pgd2) that encode 6-phosphogluconate dehydrogenase. Ten genotypic combinations of wild-type (Pgd1+3.8;Pgd2+5) and null alleles of pgd1 and pgd2 were constructed in the B73 background. The maximum catalytic activity of 6-phosphogluconate dehydrogenase in the roots of seedlings of these lines correlated with the number of functional pgd1 and pgd2 alleles. Enzyme activity in the double-null homozygote (pgd1-null;pgd2-null) was 32% of that in B73 wild-type suggesting the presence of at least one other isozyme of 6-phosphogluconate dehydrogenase in maize. Subcellular fractionation studies and latency measurements confirmed that the products of pgd1 and pgd2 are responsible for the vast majority, if not all, of the cytosolic 6-phosphogluconate dehydrogenase activity in maize roots. Essentially, all of the residual activity in the double-null homozygote was confined to the plastids. Low concentrations (0.1–0.5 mM) of sodium nitrite stimulated 14CO2 production by detached root tips of both wild-type and 6-phosphogluconate dehydrogenase-deficient maize seedlings fed [U-14C]glucose. Analysis of the ratio of 14CO2 released from [1–14C]glucose relative to [6–14C]glucose (C1/C6 ratio) showed that stimulation of the oxidative pentose phosphate pathway by nitrite correlated with the dosage of wild-type alleles of pgd1 and pgd2. The failure of 6-phosphogluconate dehydrogenase-deficient lines to respond to nitrite indicates that perturbation of the cytosolic oxidative pentose phosphate pathway can influence the provision of reductant in the plastid. We conclude that the plastidic and cytosolic oxidative pentose phosphate pathways are able to co-operate in the provision of NADPH for biosynthesis.  相似文献   

9.
Marus, Adrienne (University of Cincinnati, Cincinnati, Ohio), and Emily J. Bell. Carbohydrate catabolism of Mima polymorpha. II. Abortive catabolism of glucose. J. Bacteriol. 91:2229-2236. 1966.-Mima polymorpha, unable to grow in the presence of glucose as a sole carbon and energy source, is able to obtain supplemental, utilizable energy from the partial catabolism of this substrate. Various enzymes of hexose catabolism have been assayed in this organism and in M. polymorpha M, a mutant obtained by ultraviolet irradiation. The parent strain contains a functional glucose dehydrogenase, glucose-6-phosphate dehydrogenase, diphosphofructoaldolase, and a 2-keto-3-deoxy-6-phosphogluconate aldolase, but is lacking in glucokinase, gluconokinase, 2-ketogluconokinase, and 6-phosphogluconate dehydrogenase. The enzymes present indicate partially functioning hexose diphosphate and Entner-Doudoroff pathways. The absence of kinases explains the inability of the strain to grow on glucose and an absence of 6-phosphogluconate dehydrogenase would indicate the absence of the complete pentose pathway. The mutant strain, M. polymorpha M, possesses, in addition to those enzymes produced by the wild type, both gluconokinase and 6-phosphogluconate dehydrogenase. The presence of the former explains the mutant's ability to grow on glucose, and the presence of the latter indicates a more complete pentose shunt. The supplemental energy obtained from partial glucose catabolism (to gluconic acid) may be obtained from a cytochrome-linked reaction of the glucose dehydrogenase.  相似文献   

10.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

11.
12.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

13.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

14.
15.
Exposure of rat pheochromocytoma PC12 cells to 0.1 mM 6-aminonicotinamide (6AN) for 24 hours resulted in a 500-fold increase in 6-phosphogluconate indicating active metabolism of glucose via the oxidative enzymes of the pentose phosphate pathway. Amounts of 6-phosphogluconate that accumulated in 6AN-treated cells at 24 hours were significantly increased by treatment of the cells with nerve growth factor (NGF) (100 ng 7S/ml) suggesting that metabolism of glucose via the pentose pathway at this time was enhanced by NGF. This stimulation of metabolism via the pentose pathway is probably a late response to NGF because initial rates of 6-phosphogluconate accumulation in 6AN-treated cells were the same in the presence and absence of NGF. Moreover, amounts of14CO2 generated from 1-[14CO2]glucose during the initial six hour incubation period were the same in control and NGF-treated cells. Specific activities of hexose phosphates labeled from 1-[14CO2]glucose were also the same in control and NGF-treated cells. The observation that 6AN inhibited metabolism via the pentose phosphate pathway but failed to inhibit NGF-stimulated neurite outgrowth suggests that NADPH required for lipid biosynthesis accompanying NGF-stimulated neurite outgrowth from PC12 cells can be derived from sources other than, or in addition to, the oxidative enzymes of the pentose phosphate pathway.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   

16.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

17.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

18.
Summary A glucose-negative mutant of Saccharomyces cerevisiae lacking 6-phosphogluconate dehydrogenase, the second enzyme of the pentose phosphate pathway, has been obtained by inositol starvation. Suppression of this mutant for growth on glucose takes place by the loss of glucose 6-phosphate dehydrogenase. A lesion in the latter enzyme alone leaves growth paractically unaffected. The mutations define the respective structural genes.  相似文献   

19.
Extracts of Pseudomonas citronellolis cells grown on glucose or gluconate possessed all the enzymes of the Entner-Doudoroff pathway. Gluconokinase and either or both 6-phosphogluconate dehydratase and KDPG aldolase were induced by growth on these substrates. Glucose and gluconate dehydrogenases and 6-phosphofructokinase were not detected. Thus catabolism of glucose proceeds via an inducible Entner-Doudoroff pathway. Metabolism of glyceraldehyde 3-phosphate apparently proceeded via glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase. These same enzymes plus triose phosphate isomerase were present in lactate-grown cells indicating that synthesis of triose phosphates from gluconeogenic substrates also occurs via this pathway. Extracts of lactate grown-cells possessed fructose diphosphatase and phosphohexoisomerase but apparently lacked fructose diphosphate aldolase thus indicating either the presence of an aldolase with unusual properties or requirements or an alternative pathway for the conversion of triose phosphate to fructose disphosphate. Cells contained two species of glyceraldehyde 3-phosphate dehydrogenase, one an NAD-dependent enzyme which predominated when the organism was grown on glycolytic substrates and the other, an NADP-dependent enzyme which predominated when the organism was grown on gluconeogenic substrates.  相似文献   

20.
Despite the importance of the oxidative pentose phosphate (PP) pathway as a major source of reducing power and metabolic intermediates for biosynthetic processes, almost no direct genetic or biochemical evidence is available for Bacillus subtilis. Using a combination of knockout mutations in known and putative genes of the oxidative PP pathway and 13C-labeling experiments, we demonstrated that yqjI encodes the NADP+-dependent 6-P-gluconate dehydrogenase, as was hypothesized previously from sequence similarities. Moreover, YqjI was the predominant isoenzyme during glucose and gluconate catabolism, and its role in the oxidative PP pathway could not be played by either of two homologues, GntZ and YqeC. This conclusion is in contrast to the generally held view that GntZ is the relevant isoform; hence, we propose a new designation for yqjI, gndA, the monocistronic gene encoding the principal 6-P-gluconate dehydrogenase. Although we demonstrated the NAD+-dependent 6-P-gluconate dehydrogenase activity of GntZ, gntZ mutants exhibited no detectable phenotype on glucose, and GntZ did not contribute to PP pathway fluxes during growth on glucose. Since gntZ mutants grew normally on gluconate, the functional role of GntZ remains obscure, as does the role of the third homologue, YqeC. Knockout of the glucose-6-P dehydrogenase-encoding zwf gene was primarily compensated for by increased glycolytic fluxes, but about 5% of the catabolic flux was rerouted through the gluconate bypass with glucose dehydrogenase as the key enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号