首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of nucleoside diphosphate kinase to the adenylate energy charge   总被引:5,自引:0,他引:5  
The reaction catalyzed by nucleoside diphosphate kinase responds to the energy charge of the adenylate pool. The velocity is maximal at a charge of 1.0, and decreases sharply with a decrease in the charge. This response may control the flow of phosphate from ATP into the other nucleotide pools and thus participate in the regulation of macromolecular synthesis by the energy level of the cell, as reflected in the charge of the adenylate pool.  相似文献   

2.
Abstract. The response of the adenylate energy charge (AEC) ratio and the adenine nucleotide pools to nutrients was studied in two perennial marsh plant species. Adenine nucleotide levels and the AEC ratio were measured in Spartina patens (Alton) Muhl. plants which were grown in the greenhouse at various nutrient levels as well as in Spartina alterniflora Loisel. transplants removed from the field but maintained in marsh soil amended with different nutrient supplements. In addition, adenine nucleotide concentrations were measured in both species in their natural environment and compared with that of the same species grown in the greenhouse with a complement of nutrients.
The addition of nutrients stimulated an increase in the individual and total adenylate pools and the AEC ratio. Low nutrient levels resulted in extremely reduced adenylate pools. The AEC ratio was significantly affected in some instances, but did not decrease proportionately with the adenine nucleotide level and was typically maintained at values above 0.60. The adenine nucleotide concentrations measured in the leaves of both species were significantly higher in greenhouse-grown plants compared to field plants, but the AEC ratios were not significantly different.
Because the AEC ratio in plants can be significantly affected by nutrient level. AEC response in field investigations should be planned with attention to the potential effect of dissimilar nutrient levels among study sites.  相似文献   

3.
Adenine nucleotide pools and adenylate energy charge distributions were determined by using a laboratory-generated quasi-steady-state Pseudomonas aeruginosa biofilm. The method used involved freezing and sectioning of the intact biofilm, followed by extraction and assay of the adenylates in the sectioned material. Results indicated an increase in adenylate energy charge of about 0.2 units from the bottom to the surface of the biofilm. However, energy charge values were generally low throughout the biofilm, reaching a maximum of only 0.6 units. Of the adenylates measured, AMP was the predominant nucleotide, especially in the deeper parts of the biofilm profile.  相似文献   

4.
Adenine nucleotide pools and adenylate energy charge distributions were determined by using a laboratory-generated quasi-steady-state Pseudomonas aeruginosa biofilm. The method used involved freezing and sectioning of the intact biofilm, followed by extraction and assay of the adenylates in the sectioned material. Results indicated an increase in adenylate energy charge of about 0.2 units from the bottom to the surface of the biofilm. However, energy charge values were generally low throughout the biofilm, reaching a maximum of only 0.6 units. Of the adenylates measured, AMP was the predominant nucleotide, especially in the deeper parts of the biofilm profile.  相似文献   

5.
Adenine nucleotide pools and their energy charge were measured during balanced and unbalanced growth of photoheterotrophic Chromatium cultures. The methods used involved rapid sampling, accurate to within 1 s, from isotopically labeled cultures followed by chromatographic separation of individual nucleotides. During balanced growth, both energy charge and adenosine triphosphate (ATP) concentrations, whether expressed as a function of cell protein or intracellular water, were slightly higher in limiting light intensities than in cultures growing at their maximal rate in bright light. The ATP found corresponded to 4.67 +/- 0.08 nmol/mg of protein or 1.34 +/- 0.57 mM for low-light cells and to 4.41 +/- 0.58 mmol/mg of protein or 0.85 +/- 0.12 mM for high-light cells. Corresponding energy charges were 0.85 +/- 0.02 and 0.81 +/- 0.02. Illumination shifts caused differential synthesis of photosynthetic pigments lasting 2 to 3 h without corresponding perturbation of adenine nucleotide levels. Cultures in intermittent illumination were severely affected by some cycle durations; they had abnormal morphology and very high bacteriochlorophyll-to-protein ratios. In such cultures, energy charge and nucleotide concentrations were within normal limits and relaxed to the dark steady state during the dark periods. Arsenate at AsO(4) (3-) to PO(4) (3-) ratios of 10:1 in the medium retarded growth, but no abnormality of charge or quantity of phosphate-containing nucleotides was found. These experiments therefore suggest that, within experimental error, neither the size nor the charge of the adenylate pools governs growth rate in Chromatium. Moreover, these parameters do not appear to be concerned in regulating the synthesis of photosynthetic apparatus in this organism.  相似文献   

6.
A Kahru  R Vilu 《Microbios》1990,62(251):83-92
The effect of growth rate on ATP pool and adenylate energy charge (EC) value of Escherichia coli has been studied in batch culture on different media (mu max varying from 0.1 h-1 to 1.2 h-2) and in continuous culture at dilution rates (D = mu) from 0.045 h-1 to 0.310 h-1. Within the limits of error both ATP pool and EC values did not change with alterations in the relative growth rate of E. coli. The effect of in vivo EC values on experimental errors in ATP, ADP and AMP measurements with the luciferin-luciferase method, and, subsequently, on measurements of different ratios between adenylates, as in the case of adenylate kinase in vivo equilibrium, is discussed.  相似文献   

7.
Since the standard Gibbs energies of formation are known for all the species in the purine nucleotide cycle at 298.15 K, the functions of pH and ionic strength that yield the standard transformed Gibbs energies of formation of the ten reactants can be calculated. This makes it possible to calculate the standard transformed Gibbs energies of reaction, apparent equilibrium constants, and changes in the binding of hydrogen ions for the three reactions at desired pHs and ionic strengths. These calculations are also made for the net reaction and a reaction that is related to it. The equilibrium concentrations for the cycle are calculated when all the reactants are initially present or only some are present initially. Since the concentrations of GTP, GDP, and P(i) may be in steady states, the equilibrium concentrations are also calculated for the system at specified steady-state concentrations.  相似文献   

8.
Pyruvate kinase (EC 2.7.1.40) from Azotobacter vinelandii responds sharply to the adenylate energy charge, with a decrease in activity at high values of charge, as expected for an enzyme of an adenosine triphosphate-regenerating sequence. Glycolytic intermediates, especially glucose 6-phosphate, fructose 6-phosphate, and fructose-1,6-diphosphate, strongly stimulate the reaction and overcome the inhibition caused by high values of energy charge. Thus, the properties of this enzyme depend on interaction between energy charge and the concentrations of hexose phosphates. The properties of pyruvate kinase, together with those of phosphoenolpyruvate carboxylase, aspartokinase, and citrate synthase, seem adapted to provide appropriate partitioning of phosphoenolpyruvate between competing pathways in response to metabolic need.  相似文献   

9.
Adenylate-pool composition, energy charge, and nitrogenase activity were examined in isolated heterocysts from Anabaena variabilis (ATCC 29413). ATP formation was detected as a light- or oxygen-induced increase in ATP concentration. No cofactors or substrates had to be added for photophosphorylation to occur, whereas oxidative phosphorylation was dependent on hydrogen and oxygen (Knallgas reaction). The increase in ATP concentration was reflected by a decrease in AMP concentration, accompanied by small changes in ADP levels. Thus, a regulation of the adenylate pool by a myokinase (adenylate kinase) has to be assumed. Upon dark-light transitions, the energy charge in heterocysts increased from values below 0.4 to values approaching 0.8. High energy-charge values, reached in the light only, allowed for high rates of acetylene reduction in the presence of hydrogen. The increase in the energy charge in the dark to approx. 0.64 by addition of oxygen (5% (vv) in the presence of hydrogen) resulted in low nitrogenase activities, generally not exceeding 1–3% of the light-induced rates. In the dark, oxygen concentrations above 10% were inhibitory to both ATP formation and acetylene reduction. Increasing light intensities led to a steep increase in energy charge followed by an increase in nitrogenase activity. Plotting enzyme activity versus energy charge, a nonlinear, asymptotic relationship was observed.  相似文献   

10.
Corn plants (Zea mays L. cv Pioneer 3906) were grown in a glass house on control and saline nutrient solutions, in winter and summer. There were two saline treatments, both with osmotic potential = −0.4 megapascal but with different Ca2+/Na+ ratios: 0.03 and 0.73. Root tips and shoot meristems (culm tissue) of 26 day-old plants were analyzed for nucleotides to ascertain if there were correlations between nucleotide pool size and the reduced growth on saline cultures. Several other cell components also were determined. Plants grown in winter were only half as large as those grown in summer mainly because of the lower light intensity and lower temperature. But the relative yield reduction on salt treatment compared to the control was similar in winter and summer. The two different salt treatments caused similar yield reductions. Neither salt treatment affected nucleotide pools in culm tissue, with the possible exception of UDPG in winter. In the case of root tips, salt treatment had little or no effect on nucleotide pool sizes in winter when many already seemed near a critical minimum, but in summer it reduced several pools including ATP, total adenine nucleotide, UTP, total uridine nucleotide, and UDP-glucose. The reductions were greatest on the salt treatment with low Ca2+/Na+. There was no simple correlation between the effects of salt stress on growth and on nucleotide pool size. The nucleotide pools of culm tissue indicated that in some respects this tissue was effectively insulated from the salt stress. Roots that were in direct contact with the saline solution indicated significant reductions in nucleotide pools only in the summer whereas growth was reduced both summer and winter. It is possible that the nucleotide concentrations of root cells in winter were already near a critical minimum so that nucleotide synthesis and growth were tightly linked. Significant reductions in nucleotide pools that would be expected to affect growth were more evident in summer when pools were larger and growth was more rapid. But even where ATP and total adenine nucleotides were reduced, the ratio of ATP:ADP and the adenylate energy charge remained unchanged indicating an active adenylate kinase that had access to most of the adenine nucleotide pools, and possible catabolism of excess AMP.  相似文献   

11.
Randak C  Welsh MJ 《Cell》2003,115(7):837-850
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require the large energy of ATP hydrolysis to gate. We found that CFTR also has adenylate kinase activity (ATP + AMP <=> ADP + ADP) that regulates gating. When functioning as an adenylate kinase, CFTR showed positive cooperativity for ATP suggesting its two nucleotide binding domains may dimerize. Thus, channel activity could be regulated by two different enzymatic reactions, ATPase and adenylate kinase, that share a common ATP binding site in the second nucleotide binding domain. At physiologic nucleotide concentrations, adenylate kinase activity, rather than ATPase activity may control gating, and therefore involve little energy consumption.  相似文献   

12.
The presence of three soluble nucleotide phosphotransferases in bovine rod outer segments was demonstrated: guanylate kinase (EC 2.7.4.8), nucleoside-diphosphate kinase (EC 2.7.4.6) and adenylate kinase (EC 2.7.4.3). The enzyme guanylate kinase, which catalyzes the reaction GMP + ATP in equilibrium GDP + ADP, was purified to homogeneity from isolated bovine rod outer segments as well as from bovine retinas. The enzyme preparations obtained from both sources are identical in their chromatographic properties, molecular mass (20-23 kDa for both native enzyme and dodecylsulfate-denatured polypeptide), Km values (13 microM for GMP and 430 microM for ATP), specific activities, and nucleotide specificities. The enzyme's turnover number was estimated to be 130 s-1. The minimum amount of enzyme found in rod outer segments is about 1 copy per 800 rhodopsin molecules. The role of the enzyme in the cyclic GMP cycle in rod outer segments is discussed.  相似文献   

13.
The effects of ethanol and acetaldehyde upon adenine nucleotide concentrations in rat heart and liver were determined. Ethanol administered either acutely (8 g kg 0.73) or chronically (20% solution in drinking water for 21 d) significantly decreased ATP concentrations, adenylate energy charge (EC) and adenylate kinase mass action ratio (gamma AK) in liver but affected gamma AK only in heart. Acetaldehyde treatment elicited similar effects but of lesser magnitude.  相似文献   

14.
The relationship was studied between the energy metabolism of the actinomyceteStreptomyces aureofaciens and the biosynthesis of chlorotetracycline by this organism. The energy charge values in a culture of low-production strain were almost identical with those of a production variant but the total sum of adenylates was about 10 times higher. In the stationary growth phase both strains evinced a drop in energy charge values followed by a rise to the original level. An increase in the concentration of inorganic phosphate in fermentation medium caused a suppression of antibiotic formation in the lowproduction strain and further rise in the total adenylate level. The expression of the energy charge inStreptomyces aureofaciens acquires a complex character owing to the participation, apart from the adenylate system, of high-molecular polyphosphates as energy donors and the probable lack of a regulating mechanism such as the adenylate kinase reaction.  相似文献   

15.
31P NMR spectra of equilibrium mixtures of enzyme-bound reactants and products of the adenylate kinase reaction (formula; see text) were analyzed by using computer simulations based on density matrix theory of chemical exchange. Since adenylate kinase has the unique feature that the reactants in the reverse direction are both ADP molecules, which are indistinguishable off the enzyme, the density matrix equations are formulated for the ABC + D in equilibrium A'B' + A"B" exchange appropriate for the reaction, in which the interchange of A'B' and A"B" is explicitly introduced. It is shown that the consideration of this interchange is essential to explain the experimentally observed line shapes. By comparison of the computer-simulated spectra with various values for the rates of the exchange with the experimental spectra for porcine adenylate kinase at pH 7.0 and T = 4 degrees C, the following characteristic rates were determined: interconversion rates, 375 +/- 30 s-1 (ATP formation) and 600 +/- 50 s-1 (ADP formation); interchange rates of donor and acceptor ADP's, 100 +/- 30 s-1 (in the presence of optimal Mg2+ concentration), 1500 +/- 100 s-1 (in the absence of Mg2+). It is shown that under the conditions of the experiments the interchange rate is the lower limit of the dissociation rate of ADP (or MgADP from the acceptor site if Mg2+ was present) from the enzyme complexes. The significance of these interchange rates and their values relative to the interconversion rates is discussed with special reference to the role of the Mg2+ ion in the differentiation of the two nucleotide binding sites on adenylate kinase.  相似文献   

16.
Synaptosomes prepared and incubated in a variety of ways from rat cerebra exhibited intractable, unphysiologically low adenylate energy charge values (approximately 0.37-0.60), low total adenine nucleotide contents (approximately 8-10 nmol/mg protein), and much higher adenylate kinase apparent Keq values (approximately 3-8) as compared to intact brain tissue (values of approximately 0.90, 25 nmol/mg, and 0.74, respectively). Synaptosomes prepared from mouse, dog, and chicken cerebra had values essentially identical to those from rat. When incubated under oxygen in a physiological salt solution containing glucose, synaptosomes metabolized more glucose to lactic acid than to CO2, and the addition of 100 microM veratridine caused a two- to threefold stimulation of O2 uptake, lactate accumulation, and CO2 output. It is known that synaptosome fractions contain a substantial number (at least 30-45% by volume) of cytoplasm-containing particles devoid of mitochondria (henceforth termed "cytosolic particles"), and that approximately 80% of brain hexokinase is bound to the outer mitochondrial membrane. For the cytosolic particles, lacking oxidative phosphorylation, to maintain their "in vivo" ATP turnover would require about a 19-fold increase in the glycolytic rate, which is not possible due to limiting amounts of hexokinase, and thus these particles are postulated to be responsible for the high level of aerobic lactate accumulation and the intractable low energy charge values found in synaptosome fractions. The mitochondria-containing particles are postulated to have a normal energy charge, a submaximal glycolytic rate, and minimal lactate production, on the basis of the capacity of veratridine to stimulate synaptosomal O2 uptake and CO2 and lactate output. Calculations based on this "two populations of particles" hypothesis indicate that for synaptosome fractions in general, (1) the cytosolic particles contain approximately 35-64% of the total adenine nucleotides and maintain an energy charge of approximately 0.12; (2) the cytosolic particles and mitochondria-containing particles have adenylate kinase apparent Keq values of approximately 0.21-1.66 and 0.74, respectively, revealing that the higher apparent Keq values of the synaptosome fractions probably are not real departures from equilibrium: and (3) approximately 31-45% of synaptosome fraction protein is contained in debris, which, when taken into account, yields total adenine nucleotide contents in the cytosolic particles and mitochondria-containing particles of approximately 15-24 and approximately 11-19 nmol/mg of particle protein, respectively.  相似文献   

17.
Escherichia coli strain CR341T28 will not grow at temperatures above 34 degrees C in liquid medium, and the adenylate kinase of this strain is heat sensitive. When a culture was shifted from a permissive (30 degrees C) to a nonpermissive (36 degrees C) temperature, the adenylate energy charge fell from 0.9 to 0.2, with a concurrent decrease in the number of viable cells and in the specific activity of adenylate kinase. When cultures of the temperature-sensitive strain were grown at temperatures above 30 degrees C, the adenylate energy charge, the specific activity of adenylate kinase, and the growth rate were lower than the corresponding parameters for the parental strain. By isotopic labeling of the adenine nucleotides in vivo, it was determined that increasing growth temperatures between 30 and 34 degrees C for the heat-sensitive strain resulted in a decrease in the adenosine triphosphate-to-adenosine monophosphate and adenosine triphosphate-to-adenosine diphosphate ratios. Between 26 and 30 degrees C the adenosine triphosphate-to-adenosine diphosphate ratio was essentially normal in the temperature-sensitive strain, but the adenosine triphosphate-to-adenosine diphosphate ratio was decreased. The adenylate ratios in the parental strain did not change between 30 and 34 degrees C. The adenylate kinase mass action ratio for each strain was essentially constant under all growth conditions. When assayed at 30 degrees C, the affinities of the enzyme from the mutant strain were somewhat lower than those of the parent adenylate kinase. The mutant enzyme also did not exhibit the substrate inhibition that was observed at high adenosine monophosphate concentrations with the parental enzyme. An increase in the assay temperature from 30 degrees to 40 degrees C had little or no effect on the Km values determined for the parental adenylate kinase, but caused the Km values determined for the mutant adenylate kinase to increase by a factor of two or more.  相似文献   

18.
Summary Changes in the adenylate pool size, energy charge values, ATP/ADP ratio, and the whole sum of nucleotide concentrations were studied during starvation of free and covalently immobilizedSaccharomyces cerevisiae cells. The results obtained indicate a better preservation of energy status of immobilized yeasts.  相似文献   

19.
  • 1.1. Shrimps were exposed for 96 hr to various concentrations of cadmium under laboratory conditions. The LC50 was around 4 ppm Cd in water, which corresponded to 0.180 μg/g wet weight of cadmium in tail muscles.
  • 2.2. The effect of various concentrations of cadmium on adenylates was analyzed in tail muscles: At subletal cadmium concentrations, no variation of ATP, ADP and of the adenylate sum occurred, while the AMP concentration began to decrease from 0.06 ppm.
At the LC50, the ATP, ADP and AMP concentrations dropped acutely, the ATP/ADP ratio increased acutely.The apparent equilibrium constant of the adenylate kinase reaction increased significantly from 2 ppm Cd, indicating an impairment in energetic metabolism.Cadmium intoxication did not influence the value of the adenylate energy charge.  相似文献   

20.
In the present paper, a kinetic study is made of the behavior of a moiety-conserved ternary cycle between the adenine nucleotides. The system contains the enzymes S-acetyl coenzyme A synthetase, adenylate kinase and pyruvate kinase, and converts ATP into AMP, then into ADP and finally back to ATP. L-Lactate dehydrogenase is added to the system to enable continuous monitoring of the progress of the reaction. The cycle cannot work when the only recycling substrate in the reaction medium is AMP. A mathematical model is proposed whose kinetic behavior has been analyzed both numerically by integration of the nonlinear differential equations describing the kinetics of the reactions involved, and analytically under steady-state conditions, with good agreement with the experimental results being obtained. The data obtained showed that there is a threshold value of the S-acetyl coenzyme A synthetase/adenylate kinase ratio, above which the cycle stops because all the recycling substrate has been accumulated as AMP, never reaching the steady state. In addition, the concept of adenylate energy charge has been applied to the system, obtaining the enabled values of the rate constants for a fixed adenylate energy charge value and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号