首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray diffraction and i.r. absorption conformational analysis of N-tert-butyloxycarbonyl-l-phenylalanine has showed the absence of intramolecularly hydrogen-bonded peptide conformations in the solid state. The molecules are held together in rows of ‘cyclic dimer’ motifs through intermolecular NHOC (acid) and OHOC {urethane} hydrogen bonds, the secondary amide-like group of the urethane moiety being in the unusual cis conformation, whereas the carboxylic acid group in the common syn conformation. The two molecules in the unit cell present a centrosymmetric set of ?, ψ1, and ψ2 values. In polar solvents solvated species largely predominate. In saturated hydrocarbon solution non-associated and associated (mostly involving the carboxylic acid CO as the proton acceptor) species simultaneously occur. The extent of association decreases with dilution. The amount of intramolecularly hydrogen-bonded oxy-C7 and C5 forms if any, should be extremely small. The type of association at saturation seems to differ from that found in the crystalline compound obtained by precipitation with saturated aliphatic hydrocarbons (from a diethyl ether solution).  相似文献   

2.
《Inorganica chimica acta》1986,115(2):169-172
2-(Methylamino)pyridine reacts with RuCl2(CO)3 to give a carbamoyl complex, [Ru(C(O)N(CH3)(C5H4N)Cl(CO)2], which yields with pyridine (py) and acetylacetone (Hacac), respectively, [Ru(C(O)N(CH3)C5H4N)Cl(CO)2(py)] and [Ru(C(O)N(CH3)C5H4N)(CO)2(acac)]. These complexes are characterized spectroscopically. The amino group of the ligand is carbonylated and the resulted carbamoyl ligand is chelating through a pyridine ring-N and a carbamoyl-C atom. 2-Aminopyridine and 2-aminopyrimidine react similarly with RuCl2(CO)3 to give the corresponding carbamoyl complexes.  相似文献   

3.
D W Urry  T Onishi 《Biopolymers》1974,13(6):1223-1242
Proton magnetic resonance studies at 220 MHz were carried out on synthetic polymers of the repeating tetrapeptide of elastin. Temperature dependence and solvent-mixture dependence of peptide proton chemical shifts were determined for both linear polymers, N-formyl-(Val-Pro-Gly1-Gly2)n-Val OMe where n ? 8 and 40, and for cyclic polymers (Val-Pro-Gly1-Gly2)n, where n = 3 and 4. The Gly2 NH was found to be solvent shielded. In addition, by studying the polymers Boc-Val-Pro-Gly1-Gly2-OH, H-Pro-Gly1-Gly2-Val OMe, H(Pro-Gly1-Gly2-Val)3OH, and others, it was demonstrated that the Val C–O immediately preceding the Gly2 NH in the sequence was required for solvent shielding. Also the Gly2 NH resonance is found at higher field than the Gly1 NH resonance. This provides the basis for proposing a β turn in which the Pro and Gly1 residues form the corners, i.e., residues i + 1 and i + 2, and in which the Gly2 NH, residue i + 3 hydrogen bonds to the carbonyl of residue i, the Val residue. Studies on methanol–water solvent systems indicated retention of the β turn as a significant conformational feature. This suggests that the β turn occurs in the elastic fiber, which contains about 60% water but which utilizes association of hydrophobic groups as a primary force in fibrogenesis.  相似文献   

4.
5.
The crystal and molecular structures of the ligand bpenH2 (N,N′-bis(2′-pyridinecarboxamide)-1,2-ethane) and its deprotonated dimeric cobalt(III) complex fac-[Co2(bpen)3]·12H2O have been determined by single-crystal X-ray diffraction methods. Crystal data: (a) bpenH2, C14H14N4O2, orthorhombic, space group Pccn, a=9.638(1), b= 15.288(1), c = 8.684(1) Å, Z=4; (b) Co2(bpen)3· 12H2O, C42H60N12O18Co2, triclinic, space group P1, a = 11.128(3), b = 14.316(5), c = 16.466(4) Å, α= 92.02(2)°, β = 95.21(2)°, γ = 99.30(2)°, Z = 2.The structures were refined to R 0.034 and 0.053 for 1064 and 7748 independent reflexions, respectively. The bpenH2 molecule has a space group imposed centre of symmetry, with the amide group adopting a trans configuration in the closely planar picolinamide moiety. The cobalt complex is dimeric in which three bpen ligands, acting each as a bis(N2-bidentate), bridge the two metal atoms. Each cobalt atom is octahedral with CoNpy 1.944(3) and Co Nam 1.933(3) Å. The Co··Co separation is 5.493(1) Å. The symmetry of the dimeric molecule is D3 which is consistent with that indicated from solution NMR studies.  相似文献   

6.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   

7.
The solvent, pressure and temperature dependencies of the lowest energy metal to ligand charge transfer absorption bands were studied for a series of complexes of the type Mo(CO)4(NN), where NN = 2,2′-bipyridine, 1,10-phenanthroline and biacetylbis(phenylimine). Throughout the series of complexes the absorption bands shift to shorter wavelength in more polar solvents or on increasing the pressure in a particular solvent, but to longer wavelengths on increasing temperature. These main tendencies can be accounted for in terms of solvent polarity and its dependence on pressure and temperature.  相似文献   

8.
N(4)-amino-and N(4)-hydroxycytosines as base analogue mutagens   总被引:2,自引:0,他引:2  
N(4)-Aminocytosine [N(4)NH2C] and N(4)-amino-2′-deoxycytidine [N(4)NH2dC] are highly mutagenic for Escherichia coli and phage φ 80 but not for T4. There is some evidence that they are incorporated into the φ 80 DNA but [14C]-N(4)NH2C could not be detected in the bacterial DNA.N(4)-Hydroxy-5,6-dihydro-6-hydroxylaminodeoxycytidine (di-NHOH-dC) is mutagenic for φ 80 and E. coli, but N(4)-hydroxydeoxycytidine [N(4)OH-dC] only has a strong inactivating effect.  相似文献   

9.
The interaction of |CnH2n+1N+(CH3)3| · I? (n = 3, 6, 9, 12, 14, 16 or 18) with egg-yolk phosphatidylcholine-water dispersions has been studied by 31P-NMR spectroscopy. It is shown that the effective anisotropy of 31P chemical shift (?Δσeff) of the lamellar phospholipid liquid-crystalline phase Lα increases with increasing concentration and alkyl chain length of the drug. Addition of |C6H13N+(CH3)3| ·I ? or |C9H19N+(CH3)3I? to the phospholipid-water dispersion at a molar ratio ammonium salt:phospholipid > 0.8 induces in the dispersion a structure with an effective isotropic phospholipid motion. This structure is unstable and slowly transforms into the hexagonal phase. These effects have not been observed in phospholipid-water dispersions mixed with the ammonium derivatives with the longer alkyl chains n  12, 14, 16 or 18. It is proposed that these results might explain the effects of the investigated drugs on the nerve, muscle and bacterial cells.  相似文献   

10.
The following eight analogs of somatostatin were synthesized by solid phase: des-[Ala1-Gly2]-somatostatin (I); des-[Ala1-Gly2]-H2somatostatin (II); N-acetyl-Cys3-somatostatin (III); N-acetyl-Cys3-H2somatostatin (IV); N-pyvalyl-Cys3-H2somatostatin (V); N-acrylyl-Cys3-H2somatostatin (VI); N-benzoyl-Cys3-H2somatostatin (VII); N-hexanoyl-Cys3-H2somatostatin (VIII). Deletion of the N-terminal dipeptide Ala1-Gly2 is compatible with high biological activity. A single s.c. injection of these analogs as a microsuspension in saline inhibits for 24–72 hours (depending on the compound) the secretion of growth hormone normally stimulated in rats by pentobarbital.  相似文献   

11.
17ONMR measurements of labeled Pro-Leu-Gly-NH2 were carried out at different pH levels and in mixed solvents of water/acetonitrile. Complementary studies of the amide protons were carried out in acetonitrile-d3. Only the prolyl C = 17O group was sensitive to the pH level. Protonation of the amine group resulted in an upfield chemical shift of 18 ppm. The chemical shifts of each of the three oxygen sites was sensitive to the ratio water: acetonitrile. Solvent composition dependence of the chemical shift and linewidth suggests that the prolyl C = 17O is involved in intramolecular hydrogen bond formation when Pro-Leu-Gly-NH2 is dissolved in acetonitrile, while in water there is no intramolecular H bond.  相似文献   

12.
If the bicyclic peptide ring proposed by Gross etal. (1,2) does in fact exist in nisin and related antibiotics, then the unusual β-methyllanthionine component must be significantly distorted from its conformation in the free state, as determined by x-ray structure analysis. The torsion angles about the SCβ bonds are 50–100° from the torsion angles in models of the sulfur-bridged peptide ring proposed for nisin. The chirality of the methylated β-carbon atom is (S). The conformation of the amino acid differs from that of meso-lanthionine only by a 180° rotation of a carboxyl group about the CαDCβ(CH3) bond.  相似文献   

13.
14.
A method for predicting type I and II β-turns using nuclear magnetic resonance (NMR) chemical shifts is proposed. Isolated β-turn chemical-shift data were collected from 1,798 protein chains. One-dimensional statistical analyses on chemical-shift data of three classes β-turn (type I, II, and VIII) showed different distributions at four positions, (i) to (i + 3). Considering the central two residues of type I β-turns, the mean values of Cο, Cα, HN, and NH chemical shifts were generally (i + 1) > (i + 2). The mean values of Cβ and Hα chemical shifts were (i + 1) < (i + 2). The distributions of the central two residues in type II and VIII β-turns were also distinguishable by trends of chemical shift values. Two-dimensional cluster analyses on chemical-shift data show positional distributions more clearly. Based on these propensities of chemical shift classified as a function of position, rules were derived using scoring matrices for four consecutive residues to predict type I and II β-turns. The proposed method achieves an overall prediction accuracy of 83.2 and 84.2 % with the Matthews correlation coefficient values of 0.317 and 0.632 for type I and II β-turns, indicating that its higher accuracy for type II turn prediction. The results show that it is feasible to use NMR chemical shifts to predict the β-turn types in proteins. The proposed method can be incorporated into other chemical-shift based protein secondary structure prediction methods.  相似文献   

15.
The crystal structure of chloro-(1-methyltyminato- N3)-cis-diammineplatinum(II) monohydrate, cis- (NH3)2Pt(C6H7N2O2)Cl·H2O, is reported. The compound crystallizes in space group P1 with a = 6.911(2) Å, b = 8.598(3) Å, c = 11.464(4) Å, α = 100.13(3)°, β = 120.03(3)°, γ = 93.16(3)°, Z = 2. The structure was refined to R = 0.048 and Rw = 0.057. The compound contains the deprotonated 1-methylthymine ligand coordinated to Pt through N3 (1.973(10) Å). This distance represents the shortest Pt-N3(pyrimidine-2.4-dione) bond reported so far. The two PtNH3 bond lengths differ significantly: PtNH3 (trans to Cl) is longer (2.052(10) Å) than PtNH3 (trans to N3 of 1-MeT) (2.002(11) Å). The PtCl distance (2.326(3) Å) is normal, as is the large dihedral angle between the Pt coordination plane and the nucleobase (76.5°).  相似文献   

16.
The crystal structure of the title compound, SnCl(C6H5)(C4H9)[S2CN(C2H5)2], was determined and refined to an R factor of 3.2% for 4876 reflections. The molecule contains five-coordinate tin in a distorted trigonal bipyramidal arrangement with the tin atom lying 0.20 Å below the equatorial plane formed by one of the sulphur atoms, S(1), and the donor carbons of the butyl and phenyl groups. The chlorine and the other sulphur atom, S(2), occupy axial sites, making a S(2)SnCl angle of 156.85(1)°. The SnS(2) bond is markedly elongated (2.764(1) Å) compared to the SnCl bond (2.449(1) Å) and the SnS(1) bond (2.454(1) Å). The structure resembles those of analogues such as (C6H5)2Sn(glygly) in having both hydrocarbon ligands located in the equatorial plane. Crystal data: space group P1: a = 8.291(2) Å, b = 14.726(3) Å, c = 9.509(2) Å, α = 96.24(2)°, β = 107.02(3)°, γ = 116.70(2)°, Z = 2, R = 3.2% for 4876 independent reflections.  相似文献   

17.
18.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

19.
20.
CD and nmr studies have been carried out on aqueous trifluoroethanol (TFE) solutions of bradykinin (BK) and a bradykinin antagonist. The CD results exhibit a striking effect of TFE on the spectra of BK, with sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, and the BK antagonist, with sequence D -Arg-Arg-Pro-Hyp-Gly-Thi-D -Ser-D -Cpg-Cpg-Arg [where Hyp is 4-hydroxy-L -proline; Thi refers to β-(2-thienyl)-L -alanine and Cpg refers to α-cyclopentylglycine]. The effect of increasing concentration of TFE in water on the difference ellipticity at 222 nm was examined and showed that BK may be a mixture of at least two different conformers, one of which largely forms when the TFE concentration is increased beyond 80%. The linear extrapolation of 100% of the difference ellipticity of BK at low TFE concentrations yields a value in agreement with that shown by the BK antagonist, indicating that the conformation of BK at the lower TFE concentrations is similar to that of the BK antagonist. The conformational analysis was carried out using both one-dimensional and two-dimensional 1H-nmr techniques. The total correlation spectroscopy (TOCSY) spectrum of BK in a 60/40% (v/v) TFE/H2O solution at 10°C and a nuclear Overhauser effect spectroscopy (NOESY) spectrum that shows only sequential Hα(i) – NH(i + 1) or the Hα(i) – Hδδ′(i + 1) NOEs indicate that the majority of the molecules adopt an all-trans extended conformation. The TOCSY for BK in the 95/5% (v/v) TFE/H2O solution shows that there are two major conformations in the solution with about equal population. The NOESY experiment shows two new important cross peaks for one conformation, namely Pro2(α)-Pro3 (α) and the Pro2(α)-Gly4(NH), indicating a cis Pro2-Pro3 bond and a type VI β-turn between residues Arg1 and Gly4 involving cis proline at position 3, respectively. The low temperature coefficient of Gly4 for this conformation suggests the presence of an intramolecular hydrogen bond, therefore a type VIa β-turn is present. The other conformation is all trans and extended. The BK antafonist shows difference CD spectra in TFE solutions referred to H2O that are superficially indicative of a β-bend. However, nmr speaks against this possibility, as only one set of peaks were observed in the TOCSY and NOESY experiments, indicating an all-trans extended confirmation over the range of TFE concentrations. The BK-antagonist CD data suggest that solvent perturbation of the CD of an extended confirmation perturbation of the optical activity of the thienyl moiety of the peptide since the CD spectrum of N-acetyl-β-thienyl-L -alanine N-methylamide is strongly perturbed by TFE. The present results again demonstrate the complementary relationship between CD and nmr. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号