首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work from these laboratories has shown that in PC12 cells the phosphorylation of a specific soluble protein is decreased by treatment with nerve growth factor. This protein, designated Nsp100, and its kinase have been separated and partially purified from PC12 cells. The present studies have been designed to investigate the role of calcium in this action of nerve growth factor. It is shown here, using PC12h cells, that A23187, a calcium ionophore, and high levels of K+, a depolarizing stimulus, also decrease phosphorylation of Nsp100. Furthermore, the actions of nerve growth factor as well as those of A23187 and high levels of K+ are prevented by treatment of the cells with the calcium chelator EGTA. It is also shown that agents that raise levels of cyclic AMP in the cells, specifically dibutyryl cyclic AMP and cholera toxin, also decrease phosphorylation of Nsp100 but, in addition, increase phosphorylation of tyrosine hydroxylase. The action of these latter agents on Nsp100 is blocked by EGTA, but their action on tyrosine hydroxylase is not, indicating that even agents such as cholera toxin act on Nsp100 through a Ca2+-dependent mechanism.  相似文献   

2.
In previous studies from this laboratory (Yu, M.W., Tolson, N. W., and Guroff, G. (1980) J. Biol. Chem. 255, 10481-10492) nerve growth factor treatment of PC12 cells was shown to increase the phosphorylation of a specific nonhistone nuclear protein. In the present work these whole-cell observations have been pursued and a cell-free system developed, based on the detergent treatment devised by Lenk et al. (Lenk, R., Ransom, L., Kaufmann, Y., and Penman, S. (1977) Cell 10, 67-78), in order to explore the nerve growth factor-sensitive phosphorylation system in biochemical detail. Using this preparation it has been shown that treatment of the whole cells with nerve growth factor for 30 min or more leads to a marked increase in the subsequent cell-free phosphorylation of the same nonhistone nuclear protein. A characterization of this phosphorylation indicates that it is quite labile to heat and to structural disruption, that it prefers ATP as phosphate donor, and that it requires Mg2+, but is inhibited by high Mg2+ levels as well as by certain other divalent cations. The site of phosphorylation appears to be on serine residues of the protein, as was the phosphorylation observed previously in whole cells. The use of various inhibitors and stimulators suggests that the kinase catalyzing this phosphorylation is not cAMP-dependent, nor is it similar to protein kinase C or casein kinase. The increased phosphorylation produced by nerve growth factor is not transient, the stimulation being constant for at least 3 days in the continuous presence of nerve growth factor. Increases in the phosphorylation of the same nuclear protein can be seen upon treatment of the cells with other effectors such as epidermal growth factor and dibutyryl cyclic AMP, the latter in spite of the fact that cAMP-dependence could not be established in the cell-free system. Finally, a similar system, with a similar stimulation of phosphorylation due to nerve growth factor treatment, can be prepared from sympathetic ganglia from neonatal animals.  相似文献   

3.
Phosphorylation of rat brain calmodulin in vivo and in vitro   总被引:1,自引:0,他引:1  
After injection of [32p]orthophosphate into the third ventricle of rat brain, calmodulin(CaM) was prepared from soluble(S2) and particulate(P2) fractions of the whole brain and analyzed by SDS-PAGE in the presence or absence of Ca2+ followed by autoradiography. CaM from both fractions(S2 and P2) was significantly phosphorylated by endogenous protein kinase(s) of rat brain. The incorporation of radioactive phosphate into membrane-bound CaM from the P2 fraction was much higher than that of soluble CaM from the S2 fraction. CaM was phosphorylated in vitro by casein kinase 2 but not by casein kinase 1 or by cyclic AMP-dependent protein kinase, suggesting that casein kinase 2 may be, at least in part, responsible for the phosphorylation of CaM even in vivo.  相似文献   

4.
Separate treatment of PC12h cells with basic fibroblast growth factor (bFGF) and with epidermal growth factor (EGF) induced a selective decrease in the incorporation of radioactive phosphate into a 100,000-dalton soluble protein during phosphorylation with (gamma-32P)ATP of soluble extracts from the cells, as was seen previously with nerve growth factor (NGF). This 100,000-dalton soluble protein was designated in earlier studies as nerve growth factor-sensitive protein 100 (Nsp100). The inhibitory effects of bFGF and EGF on Nsp100 phosphorylation were prevented by pretreatment of PC12h cells with the calcium chelator, EGTA. Treatment of PC12h cells with the plant lectin wheat germ agglutinin (WGA), which binds to N-acetylglucosamine and sialic acid residues on glycoconjugates, blocked the inhibitory effects of bFGF, EGF, and NGF on Nsp100 phosphorylation. The blockage by WGA was reversed by the addition of the lectin-specific sugar N-acetylglucosamine to the PC12h cultures. Although pretreatment of PC12h cells with succinylated WGA, which has the ability to bind to N-acetylglucosamine but not to sialic acid residues, failed to block the inhibitory effect of NGF on Nsp100 phosphorylation as described previously, it did prevent the inhibitory effect of bFGF on this phosphorylation. These data suggest that in PC12h cells bFGF and EGF induce a decrease in the phosphorylation of Nsp100 mediated through a Ca2(+)-dependent mechanism, as in the case of NGF. Furthermore, the blockage of the bFGF-induced inhibition of Nsp100 phosphorylation by WGA and its succinylated form indicates that N-acetylglucosamine residues of bFGF receptor molecules might be involved in the mechanism by which bFGF inhibits the phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have developed a cell-free assay to detect and characterize nerve growth factor (NGF)-activated protein kinase activity. Cultured PC12 cells were briefly exposed to NGF, and extracts of these were assayed for phosphorylating activity using exogenously added tyrosine hydroxylase as substrate. Tyrosine hydroxylase was employed since it is an endogenous substrate of NGF-regulated kinase activity and is activated by phosphorylation. In the cell-free assay, extracts prepared from NGF-treated cells yielded a 2-3-fold greater incorporation of phosphate into tyrosine hydroxylase as compared with extracts of control, NGF-untreated cells. Activation did not occur, however, if NGF was added directly to cell extracts. The NGF-stimulated phosphorylating activity appeared to be due to regulation of a protein kinase rather than of a phosphoprotein phosphatase. Characterization of the kinase (designated as kinase N) showed that it is soluble, is detectably activated within 1-3 min after cells are exposed to NGF and maximally activated by 10 min, is half-maximally activated with 0.5 nM NGF and maximally activated with 1 nM NGF, is detectable in the presence of either Mg2+ or Mn2+ but does not require Ca2+, does not require nonmacromolecular cofactors, can use histone H1 as a substrate, and exhibits a 2-fold increase in apparent Vmax in response to NGF but does not undergo a significant change in apparent Km for either ATP or GTP. A number of characteristics of kinase N were assessed including susceptibility to inhibitors, substrate specificity, cofactor requirements, ATP dependence, and lack of down-regulation by prolonged expose to a phorbol ester. These studies indicated that it lacks tyrosine kinase activity and is distinct from a variety of well-characterized protein kinases including cAMP-dependent protein kinase, protein kinase C (Ca2+/phospholipid-dependent enzyme), Ca2+/calmodulin-dependent kinase, and casein kinase II. Preliminary purification data show that the kinase has a basic pI and that it has an apparent Mr of 22,000-25,000. The only amino acid in tyrosine hydroxylase found to be phosphorylated by the semipurified kinase is serine.  相似文献   

6.
Protein kinase C phosphorylates different sites on the 20,000-Da light chain of smooth muscle heavy meromyosin (HMM) than did myosin light chain kinase (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072). Although protein kinase C incorporates 1 mol of phosphate into 1 mol of 20,000-Da light chain when either HMM or the whole myosin molecule is used as a substrate, it catalyzes the incorporation of up to 3 mol of phosphate/mol of 20,000-Da light chain when the isolated light chains are used as a substrate. Threonine is the major phosphoamino acid resulting from phosphorylation of HMM by protein kinase C. Prephosphorylation of HMM by protein kinase C decreases the rate of phosphorylation of HMM by myosin light chain kinase due to a 9-fold increase of the Km for prephosphorylated HMM compared to that of unphosphorylated HMM. Prephosphorylation of HMM by myosin light chain kinase also results in a decrease of the rate of phosphorylation by protein kinase C due to a 2-fold increase of the Km for HMM. Both prephosphorylations have little or no effect on the maximum rate of phosphorylation. The sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C results in a decrease in actin-activated MgATPase activity due to a 7-fold increase of the Km for actin over that observed with phosphorylated HMM by myosin light chain kinase but has little effect on the maximum rate of the actin-activated MgATPase activity. The decrease of the actin-activated MgATPase activity correlates well with the extent of the additional phosphorylation of HMM by protein kinase C following initial phosphorylation by myosin light chain kinase.  相似文献   

7.
1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), which has been identified as a potent inhibitor of protein kinase C in vitro (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry, in press), enhanced serotonin release from human platelets that was induced by the 12-O-tetradecanoyl phorbol 13-acetate and correspondingly decreased incorporation of radioactive phosphate into a 20,000-dalton protein. H-7 did not affect the protein phosphorylation or the serotonin secretion in unstimulated platelets. A phosphopeptide with a molecular weight of 20,000 has previously been identified as a light chain (LC20) of platelet myosin and both protein kinase C and Ca2+-calmodulin-dependent myosin light-chain kinase have been shown to be involved in its phosphorylation. Two-dimensional peptide mapping following tryptic hydrolysis revealed that H-7 selectively inhibited the protein kinase C-catalyzed phosphorylation of myosin light chain. This pharmacological evidence suggests that Ca2+-activated, phospholipid-dependent myosin light-chain phosphorylation may play an inhibitory role in the release reaction.  相似文献   

8.
Clathrin-coated vesicles purified from bovine brain express protein kinase activity on two principal endogenous vesicle-associated substrates: a 50,000-Mr polypeptide (pp50) and clathrin-associated protein2 (CAP2; the faster-migrating clathrin light chain). Various exogenous substrates, e.g., casein, phosvitin, histone II, and histone III, also are phosphorylated. The pp50 protein kinase activity of clathrin-coated vesicles is not modulated by Ca2+, calmodulin, phosphatidylserine, or cyclic AMP. On the other hand, phosphorylation of the other endogenous substrates requires certain activators, including histone, polylysine, polyarginine, or polyethylenimine. Phosphate incorporation into pp50 was sensitive to divalent cations that inhibit sulfhydryl-dependent enzymes in the following order of potency: Zn2+ greater than Hg2+ greater than Cd2+, Cu2+, and Pb2+. Phosphate incorporation into CAP2 with polylysine present was insensitive to divalent cations. The alkylating agents dithiodinitrobenzene, phenacyl bromide, and N-ethylmaleimide inhibited phosphate incorporation into pp50 up to 90% without affecting incorporation into the other substrates. Vanadium pentoxide inhibited phosphorylation of CAP2 but had a minimal effect on pp50. CAP2 kinase activity was separated from the coated vesicle membrane and from dis-assembled clathrin triskelions, coeluting with the assembly polypeptide complex on a Sepharose 4B column. It retained phosphorylation properties similar to those of intact vesicles. These data imply that clathrin-coated vesicle kinases are elements of the coat proteins and may be involved in the assembly/disassembly of clathrin triskelions or interactions of coated vesicles with other cellular components.  相似文献   

9.
Myosin light-chain kinase was purified from porcine myometrium to apparent homogeneity at about 262-fold with an Mr of 130 000 as determined by SDS-polyacrylamide gel electrophoresis and a sedimentation coefficient of 4.5 S. The approximate content of the soluble myosin light-chain kinase was estimated to be about 0.85 microM. The purified enzyme exhibited strict substrate specificity only for 20-kDa myosin light chain and Ka values of 0.6 nM and 0.3 microM for calmodulin and Ca2+, respectively. The enzyme was phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase, which resulted in a decrease in the affinity for calmodulin of 4-7-fold without effect on the Vmax. The maximal amount of phosphate incorporated into the enzyme was 0.5-0.8 and 1.0-1.4 mol per mol of the enzyme in the presence and absence of Ca2+ and calmodulin, respectively. In the presence of a subsaturating concentration of calmodulin, the enzyme showed a lower sensitivity for Ca2+ by phosphorylation.  相似文献   

10.
Incubation of cell-free extracts from PC12 cells with [32P]ATP leads to the phosphorylation of a 100,000-dalton protein. In extracts from cells treated with nerve growth factor, the labeling of the 100,000-dalton protein is substantially and selectively reduced. Direct quantitation indicates that the reduction is a minimum of 30-50% in the various experiments. The decrease is evident after as little as 15 min of nerve growth factor treatment, and disappears within 2 h after the removal of nerve growth factor. The decrease is dose dependent; a complete response is seen after treatment with 10 ng of nerve growth factor/ml. Some decrease in phosphorylation is also seen after treatment of the cells with epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, or 5'-N-ethylcarboxamideadenosine, a potent adenosine receptor agonist, but not after treatment with insulin. The phosphorylation of the 100,000-dalton protein, in extracts from either control or nerve growth factor-treated cells, leads almost exclusively to the formation of phosphothreonine. The addition of equal amounts of extract from untreated cells and extract from nerve growth factor-treated cells produces a level of phosphorylation exactly intermediate between those of the two extracts used separately, indicating the absence of a soluble kinase inhibitor. The data suggest that nerve growth factor treatment produces either a covalent inhibition or a physical removal of the kinase for the 100,000-dalton protein.  相似文献   

11.
Abstract— Cyclic AMP (cAMP)-dependent protein kinase catalyzes the phosphorylation of polypeptidic serine and threonine residues according to the following chemical equation: ATP + protein → phospho-protein + ADP. A heat stable, trypsin labile factor present in brain, skeletal muscle and other tissues inhibits enzymatic phosphorylation of some proteins and enhances that of others. Since brain is one of the richest sources of adenylate cyclase, cAMP, cAMP-dependent protein kinase and the heat stable protein kinase inhibitor and because they may play a role in neurotransmission, an investigation of the subcellular distribution of the heat stable factor in rat brain was undertaken. Although present in the nuclear, mitochondrial and microsomal fractions, the highest activity of protein kinase inhibitor is in the soluble fraction: its activity parallels that of the cytoplasmic enzyme marker, lactate dehydro-genase. The inhibitory activity is also found in the synaptosome or pinched-off nerve ending fraction. Following osmotic lysis of this fraction, about 90% of the factor occurs in the soluble fraction. On the other hand, only 40% of the cAMP-dependent protein kinase is solubilized and 60% remains membrane-bound. Using this membrane-bound protein kinase, phosphorylation of endogenous substrate is unaltered by inhibitor, but phosphorylation of added histone substrate is decreased.  相似文献   

12.
An enzyme of molecular weight 32,000 comprising a single subunit has been isolated from whole cell extracts of the yeast Saccharomyces cerevisiae. In vitro, the enzyme transfers the gamma phosphate of ATP to a protein substrate, histone H4, to produce an alkali-stable phosphorylation. Modification of the substrate histidine with diethylpyrocarbonate prevented phosphorylation. Phosphoamino acid analysis of the phosphorylated substrate showed the presence of 1-phosphohistidine. Hence, the isolated enzyme is a protein histidine kinase. A novel assay for acid-labile alkali-stable protein phosphorylation was used in the purification of the kinase activity to a final specific activity of 2,700 nmol/15 min/mg. The purified enzyme phosphorylates specifically histidine 75 in histone H4 and does not phosphorylate histidine 18 nor histidine residues in any other core histone. Steady state kinetic data are consistent with an ordered sequential reaction with Km values for Mg-ATP and histone H4 of 60 and 17 microM, respectively. The protein histidine kinase requires a divalent cation such as Mg2+, Co2+, or Mn2+ but will not use Ca2+, Zn2+, Cu2+, Fe2+, spermine, or spermidine. This is the first purification of an enzyme that catalyzes N-linked phosphorylation in proteins.  相似文献   

13.
It is shown that under conditions of experimental limitation of coronary blood flow in rabbits the intensity of radioactive label (32P) incorporation into creatine phosphate lowers essentially. This evidences for inhibition of creatine phosphorylation in mitochondria under ischemia due to a decrease in the activity of a mitochondrial isoenzyme of creatine kinase.  相似文献   

14.
Treatment of C6 glioma cells with a β-adrenergic agonist in the presence of radioactive phosphate leads to increased radioactivity in two nonhistone nuclear proteins. These proteins are very similar to those in the nuclei of sympathetic neurons whose phosphorylation is stimulated by nerve growth factor.  相似文献   

15.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

16.
Phosphorylase kinase was found to be activated and phosphorylated at 10mM Mg2+ by the cAMP-dependent protein kinase-catalyzed reaction ot much higher levels than observed previously when reactions were carried out in 1 to 2 mM Mg2+ (Cohen, P. (1973) Eur. J. Biochem. 34, 1; Hayakawa, T., Perkin, J.P., and Krebs, E.G. (1973) Biochemistry 12, 574). That the reaction at 10 mM Mg2+ is protein kinase-catalyzed is supported by several observations: (a) the reaction is facilitated by the addition of protein kinase; (b) the reaction depends on cAMP when protein kinase holoenzyme is uded; (c) the reaction is not inhibited by 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetate which is known to inhibit autoactivation and autophosphorylation of phosphorylase kinase; and (d) the protein inhibitor of protein kinase inhibits this reaction. The phosphorylation and activation of phosphorylase kinase seem to occur in two phases. At low Mg2+ only the first phase is manifested and involves the incorporation of 2 mol of phosphate, 1 mol into each of Subunits A and B. At high Mg2+ additional sites are phosphorylated almost exclusively on Subunit A, with phosphate incorporation approaching the final level of 7 to 9 mol. Enzyme activity at high Mg2+ is 2 to 3 times higher than that observed when activation is studied at low Mg2+. The observation that both casein and type II histone are phosphorylated to the same extent at 1 mM and 10 mM Mg2+ suggested that high Mg2+ may be altering the conformation of phosphorylase kinase thus rendering more phosphorylation sites accessible to protein kinase. Since the phosphorylation of phosphorylase kinase by either the protein kinase-catalyzed or autocatalytic reaction can result in the incorporation of 7 to 9 mol of phosphate, the finding that only about seven sites become phosphorylated by both mechanisms acting together suggest that activation by these two mechanisms may involve common phosphorylation sites.  相似文献   

17.
We have previously reported the isolation of a 35-kDa protein from A-431 cells that, in the presence of Ca2+, is an excellent in vitro substrate for the epidermal growth factor (EGF) receptor/kinase present in membrane preparations (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). In this communication we demonstrate that the phosphorylation of the 35-kDa protein is markedly enhanced in intact, 32P-labeled, A-431 cells following exposure of the cells to EGF. The 35-kDa protein immunoprecipitated from cells treated with EGF is phosphorylated to a 20-120-fold greater extent than comparable preparations from control cells. Both phosphotyrosine and phosphoserine residues are detected in the protein after treatment of the cells with EGF. EGF-dependent phosphorylation of the 35-kDa protein is barely detected unless the intact cells are exposed to EGF for periods greater than 5 min. We suggest that endosomes containing internalized EGF X receptor/kinase complexes are primarily responsible for the observed phosphorylation of the 35-kDa protein in intact cells.  相似文献   

18.
Phosphorylation of Superior Cervical Ganglion Proteins During Regeneration   总被引:2,自引:2,他引:0  
The incorporation of radioactive phosphate into proteins of both normal and regenerating ganglia of the sympathetic nervous system of the rat is reported. The incorporation reactions were carried out in vitro by incubating homogenates of excised ganglia with [gamma-32P]ATP under various conditions. It was found that incorporation of phosphate into proteins of regenerating ganglia in the molecular mass range 10,000-100,000 daltons increased up to 40% over incorporation into proteins from control ganglia during the first 3 days following injury and returned to control levels after 14 days. Analysis of the proteins by two-dimensional electrophoresis revealed that only few, i.e., less than 20, became radioactively labelled in homogenates of superior cervical ganglia in the presence of Ca2+, and even fewer in the presence of cyclic AMP. Furthermore, all these proteins fell within a narrow pI range of 4-6. The growth-associated protein, variously designated GAP-43, B-50, F-1, and pp46, has an enhanced level of expression and phosphorylation in regenerating ganglia compared with controls at day 3. Injury also caused consistently higher levels of incorporation into two other proteins with molecular masses at positions 55,000 and 85,000 and pI values of 5.1 and 4.5, respectively; the former protein most probably is beta-tubulin. The fact that both proteins are found in the 15,000 g pellet after the tissue has been solubilized in 0.5% nonionic detergent indicates that they may indeed by components of filament assemblies. Thus, the results suggest that protein phosphorylation is a mechanism involved in cytoskeletal function in regenerating nerve.  相似文献   

19.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

20.
A Golgi vesicle-enriched preparation from mammary tissue of lactating rats has been used to investigate the phosphorylation of caseins in vitro. Casein kinase, together with its casein substrates, is enclosed within the lumen of Golgi membrane vesicles and has a requirement for Ca2+ and ATP. The permeability characteristics of the Golgi membrane to ATP and Ca2+ therefore have a possible regulatory influence on casein kinase activity. This influence has been investigated by alteration of the permeability characteristics by using several agents having differing degrees of selectivity. The ionophore A23187, which permits loss of Ca2+ from the vesicles, caused a decrease in casein phosphorylation which could be reversed by externally supplied Ca2+. Alamethicin, an ionophore that creates larger transmembrane channels, caused an increase in casein phosphorylation. This increase showed a requirement for divalent metal ions which could be satisfied by either Ca2+ or Mn2+. Under the same conditions, La3+ was inhibitory. Triton X-100 caused loss of intravesicular Ca2+, yet this was accompanied by an increase in phosphate incorporation into the caseins. We conclude from these results that the binding site on casein kinase for ATP is within the Golgi membrane barrier and that they imply the presence of a transmembrane ATP-transport mechanism. Inhibition of casein phosphorylation by atractyloside and carboxyatractyloside lends support to this concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号