首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Biophysical journal》2020,118(7):1721-1732
Many multicellular communities propagate signals in a directed manner via excitable waves. Cell-to-cell heterogeneity is a ubiquitous feature of multicellular communities, but the effects of heterogeneity on wave propagation are still unclear. Here, we use a minimal FitzHugh-Nagumo-type model to investigate excitable wave propagation in a two-dimensional heterogeneous community. The model shows three dynamic regimes in which waves either propagate directionally, die out, or spiral indefinitely, and we characterize how these regimes depend on the heterogeneity parameters. We find that in some parameter regimes, spatial correlations in the heterogeneity enhance directional propagation and suppress spiraling. However, in other regimes, spatial correlations promote spiraling, a surprising feature that we explain by demonstrating that these spirals form by a second, distinct mechanism. Finally, we characterize the dynamics using techniques from percolation theory. Despite the fact that percolation theory does not completely describe the dynamics quantitatively because it neglects the details of the excitable propagation, we find that it accounts for the transitions between the dynamic regimes and the general dependency of the spiral period on the heterogeneity and thus provides important insights. Our results reveal that the spatial structure of cell-to-cell heterogeneity can have important consequences for signal propagation in cellular communities.  相似文献   

3.
We study the epidemiology of a viral disease with dose-dependent replication and transmission by nesting a differential-equation model of the within-host viral dynamics inside a between-host epidemiological model. We use two complementary approaches for nesting the models: an agent-based (AB) simulation and a mean-field approximation called the growth-matrix (GM) model. We find that although infection rates and predicted case loads are somewhat different between the AB and GM models, several epidemiological parameters, e.g. mean immunity in the population and mean dose received, behave similarly across the methods. Further, through a comparison of our dose-dependent replication model against two control models that uncouple dose-dependent replication from transmission, we find that host immunity in a population after an epidemic is qualitatively different than when transmission depends on time-varying viral abundances within hosts. These results show that within-host dynamics and viral dose should not be neglected in epidemiological models, and that the simpler GM approach to model nesting provides a reasonable tradeoff between model complexity and accuracy of results.  相似文献   

4.
《Biophysical journal》2020,118(11):2790-2800
Flagellar length control in Chlamydomonas is a tractable model system for studying the general question of organelle size regulation. We have previously proposed that the diffusive return of the kinesin motor that powers intraflagellar transport can play a key role in length regulation. Here, we explore how the motor speed and diffusion coefficient for the return of kinesin-2 affect flagellar growth kinetics. We find that the system can exist in two distinct regimes, one dominated by motor speed and one by diffusion coefficient. Depending on length, a flagellum can switch between these regimes. Our results indicate that mutations can affect the length in distinct ways. We discuss our theory’s implication for flagellar growth influenced by beating and provide possible explanations for the experimental observation that a beating flagellum is usually longer than its immotile mutant. These results demonstrate how our simple model can suggest explanations for mutant phenotypes.  相似文献   

5.
Traditional studies about disease dynamics have focused on global stability issues, due to their epidemiological importance. We study a classical SIR-SI model for arboviruses in two different directions: we begin by describing an alternative proof of previously known global stability results by using only a Lyapunov approach. In the sequel, we take a different view and we argue that vectors and hosts can have very distinctive intrinsic time-scales, and that such distinctiveness extends to the disease dynamics. Under these hypothesis, we show that two asymptotic regimes naturally appear: the fast host dynamics and the fast vector dynamics. The former regime yields, at leading order, a SIR model for the hosts, but with a rational incidence rate. In this case, the vector disappears from the model, and the dynamics is similar to a directly contagious disease. The latter yields a SI model for the vectors, with the hosts disappearing from the model. Numerical results show the performance of the approximation, and a rigorous proof validates the reduced models.  相似文献   

6.
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.  相似文献   

7.
《Biophysical journal》2022,121(8):1541-1548
Biochemical specificity is critical in enzyme function, evolution, and engineering. Here we employ an established kinetic model to dissect the effects of reactant geometry and diffusion on product formation speed and accuracy in the presence of cognate (correct) and near-cognate (incorrect) substrates. Using this steady-state model for spherical geometries, we find that, for distinct kinetic regimes, the speed and accuracy of the reactions are optimized on different regions of the geometric landscape. From this model we deduce that accuracy can be strongly dependent on reactant geometric properties even for chemically limited reactions. Notably, substrates with a specific geometry and reactivity can be discriminated by the enzyme with higher efficacy than others through purely diffusive effects. For similar cognate and near-cognate substrate geometries (as is the case for polymerases or the ribosome), we observe that speed and accuracy are maximized in opposing regions of the geometric landscape. We also show that, in relevant environments, diffusive effects on accuracy can be substantial even far from extreme kinetic conditions. Finally, we find how reactant chemical discrimination and diffusion can be related to simultaneously optimize steady-state flux and accuracy. These results highlight how diffusion and geometry can be employed to enhance reaction speed and discrimination, and similarly how they impose fundamental restraints on these quantities.  相似文献   

8.
Cytotoxic T lymphocytes (CTLs) kill virus-infected cells and tumor cells, and play a critical role in immune protection. Our knowledge of how the CTL killing efficiency varies with CTL and target cell numbers is limited. Here, we simulate a region of lymphoid tissue using a cellular Potts model to characterize the functional response of CTL killing of target cells, and find that the total killing rate saturates both with the CTL and the target cell densities. The relative saturation in CTL and target cell densities is determined by whether a CTL can kill multiple target cells at the same time, and whether a target cell can be killed by many CTLs together. We find that all the studied regimes can be well described by a double-saturation (DS) function with two different saturation constants. We show that this DS model can be mechanistically derived for the cases where target cells are killed by a single CTL. For the other cases, a biological interpretation of the parameters is still possible. Our results imply that this DS function can be used as a tool to predict the cellular interactions in cytotoxicity data.  相似文献   

9.
Cytotoxic T lymphocytes (CTLs) kill virus-infected cells and tumor cells, and play a critical role in immune protection. Our knowledge of how the CTL killing efficiency varies with CTL and target cell numbers is limited. Here, we simulate a region of lymphoid tissue using a cellular Potts model to characterize the functional response of CTL killing of target cells, and find that the total killing rate saturates both with the CTL and the target cell densities. The relative saturation in CTL and target cell densities is determined by whether a CTL can kill multiple target cells at the same time, and whether a target cell can be killed by many CTLs together. We find that all the studied regimes can be well described by a double-saturation (DS) function with two different saturation constants. We show that this DS model can be mechanistically derived for the cases where target cells are killed by a single CTL. For the other cases, a biological interpretation of the parameters is still possible. Our results imply that this DS function can be used as a tool to predict the cellular interactions in cytotoxicity data.  相似文献   

10.
11.
Studies on the genetics of adaptation from new mutations typically neglect the possibility that a deleterious mutation might fix. Nonetheless, here we show that, in many regimes, the first mutation to fix is most often deleterious, even when fitness is expected to increase in the long term. In particular, we prove that this phenomenon occurs under weak mutation for any house‐of‐cards model with an equilibrium distribution. We find that the same qualitative results hold under Fisher's geometric model. We also provide a simple intuition for the surprising prevalence of unconditionally deleterious substitutions during early adaptation. Importantly, the phenomenon we describe occurs on fitness landscapes without any local maxima and is therefore distinct from “valley crossing.” Our results imply that the common practice of ignoring deleterious substitutions leads to qualitatively incorrect predictions in many regimes. Our results also have implications for the substitution process at equilibrium and for the response to a sudden decrease in population size.  相似文献   

12.
13.
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.  相似文献   

14.
Morand  & Poulin 《Ecology letters》2000,3(3):186-190
We develop an optimality model based on classical epidemiological models to investigate the optimal time to patency in parasitic nematodes in relation to host mortality and parasite mortality. We found that the optimal time to patency depends on both host longevity and prepatent mortality of nematodes. We tested our models using a comparative analysis of the relationships between nematode time to patency, nematode mortality and host mortality. Although we confirmed the importance of prepatent mortality, we also found a significant positive influence of host mortality. Host mortality rate affects parasite survivorship and life history strategies in the same way that habitat-specific mortality regimes drive the evolution of life histories in free-living organisms.  相似文献   

15.
Early afterdepolarizations (EADs), which are abnormal oscillations of the membrane potential at the plateau phase of an action potential, are implicated in the development of cardiac arrhythmias like Torsade de Pointes. We carry out extensive numerical simulations of the TP06 and ORd mathematical models for human ventricular cells with EADs. We investigate the different regimes in both these models, namely, the parameter regimes where they exhibit (1) a normal action potential (AP) with no EADs, (2) an AP with EADs, and (3) an AP with EADs that does not go back to the resting potential. We also study the dependence of EADs on the rate of at which we pace a cell, with the specific goal of elucidating EADs that are induced by slow or fast rate pacing. In our simulations in two- and three-dimensional domains, in the presence of EADs, we find the following wave types: (A) waves driven by the fast sodium current and the L-type calcium current (Na-Ca-mediated waves); (B) waves driven only by the L-type calcium current (Ca-mediated waves); (C) phase waves, which are pseudo-travelling waves. Furthermore, we compare the wave patterns of the various wave-types (Na-Ca-mediated, Ca-mediated, and phase waves) in both these models. We find that the two models produce qualitatively similar results in terms of exhibiting Na-Ca-mediated wave patterns that are more chaotic than those for the Ca-mediated and phase waves. However, there are quantitative differences in the wave patterns of each wave type. The Na-Ca-mediated waves in the ORd model show short-lived spirals but the TP06 model does not. The TP06 model supports more Ca-mediated spirals than those in the ORd model, and the TP06 model exhibits more phase-wave patterns than does the ORd model.  相似文献   

16.
Sexual selection has long been hypothesized to lead to allopatric speciation, and one possible mechanism for this is that its interaction with stochasticity, which perturbs the trait and preference equilibria, can result in different traits being preferred in different populations. Here we specifically examine the role that stochastic changes in sexual selection strength plays in the shift of predominance between pairs of preferences and traits within a single population. We first create a single-locus null model of stochasticity during frequency dependent selection and then compare it to a two-locus population genetic model with stochastic strengths of female preferences for male traits. We find some interesting differences between the two models, primarily that in the two-locus sexual selection model shifts between preference and trait regimes occur more often with both weak and strong preferences, compared to intermediate preference strengths. We discuss the implications of our results for the evolution of pheromone blends and male responses during speciation in moths, a case that seems to match the assumptions of our model.  相似文献   

17.
Understanding the effect of multiple infections is essential for the prediction (and eventual control) of virulence evolution. Some theoretical studies have considered the possibility that several strains coexist in the same host (coinfection), but few have taken their within-host dynamics explicitly into account. Here, we develop a nested approach based on a simple model for the interaction of parasite strains with their host's immune system. We study virulence evolution by linking the within-host dynamics to an epidemiological framework that incorporates multiple infections. Our model suggests that antigenically similar parasite strains cannot coexist in the long term inside a host. We also find that the optimal level of virulence increases with the efficiency of multiple infections. Finally, we notice that coinfections create heterogeneity in the host population (with susceptible hosts and infected hosts), which can lead to evolutionary branching in the parasite population and the emergence of a hypervirulent parasite strategy. We interpret this result as a parasite specialization to the infectious state of the hosts. Our study has experimental and theoretical implications in a virulence management perspective.  相似文献   

18.
A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection. Here, we use a mathematical model to explore the role of ecological and epidemiological processes in shaping selection for costly acquired immune memory. Applying the framework of adaptive dynamics to the classic SIR (Susceptible‐Infected‐Recovered) epidemiological model, we focus on the conditions that may lead hosts to evolve high levels of immunity. Linking our work to previous theory, we show how investment in immune memory may be greatest at long or intermediate host lifespans depending on whether immunity is long lasting. High initial costs to gain immunity are also found to be essential for a highly effective immune memory. We also find that high disease infectivity and sterility, but intermediate virulence and immune period, increase selection for immunity. Diversity in host populations through evolutionary branching is found to be possible but only for a limited range of parameter space. Our model suggests that specific ecological and epidemiological conditions have to be met for acquired immune memory to evolve.  相似文献   

19.
Abstract Why do parasites harm their hosts? The general understanding is that if the transmission rate and virulence of a parasite are linked, then the parasite must harm its host to maximize its transmission. The exact nature of such trade‐offs remains largely unclear, but for vertebrate hosts it probably involves interactions between a microparasite and the host immune system. Previous results have suggested that in a homogeneous host population in the absence of super‐ or coinfection, within‐host dynamics lead to selection of the parasite with an intermediate growth rate that is just being controlled by the immune system before it kills the host (Antia et al. 1994). In this paper, we examine how this result changes when heterogeneity is introduced to the host population. We incorporate the simplest form of heterogeneity–random heterogeneity in the parameters describing the size of the initial parasite inoculum, the immune response of the host, and the lethal density at which the parasite kills the host. We find that the general conclusion of the previous model holds: parasites evolve some intermediate growth rate. However, in contrast with the generally accepted view, we find that virulence (measured by the case mortality or the rate of parasite‐induced host mortality) increases with heterogeneity. Finally, we link the within‐host and between‐host dynamics of parasites. We show how the parameters for epidemiological spread of the disease can be estimated from the within‐host dynamics, and in doing so examine the way in which trade‐offs between these epidemiological parameters arise as a consequence of the interaction of the parasite and the immune response of the host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号