首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats dehydrated for 8 days and subsequently rehydrated were given intracerebroventricularly (i.c.v.) methoxamine hydrochloride (MX) or dihydroergotamine methanosulphonate (DHE), each in a daily dose of 10 micrograms dissolved in 10 microliter of 0.9% sodium chloride. A single dose of MX injected to normally hydrated animals increased the release of hypothalamic and neurohypophysial vasopressin but did not affect significantly the oxytocic activity in the hypothalamus as well as in the neurohypophysis. Under conditions of dehydration MX did not influence the hypothalamic vasopressin content but it stimulated the neurohypophysial vasopressin depletion. On the contrary, MX distinctly inhibited the decrease of hypothalamic and neurohypophysial oxytocin content in dehydrated animals. In rehydrated animals MX restrained some what the renewal of hypothalamic vasopressin and oxytocin storage but intensified this process in the neurohypophysis. A single dose of DHE decreased the vasopressin content in the hypothalamus as well as the oxytocin content both in the hypothalamus and neurohypophysis. Under conditions of dehydration DHE stimulated the depletion of hypothalamic vasopressin and oxytocin. On the contrary, DHE strongly inhibited the depletion of oxytocin in the neurohypophysis of dehydrated rats. DHE restrained the renewal of hypothalamic vasopressin and oxytocin stores as well as intensified this process in the neurohypophysis of subsequently rehydrated rats.  相似文献   

2.
The relationship of endogenous opiate peptides of rat neuro-intermediate lobe to the release of neurohypophysial peptides has been investigated. Both dehydrated rats, with increased oxytocin and vasopressin release, as well as rats homozygous for hypothalamic diabetes insipidus (DI) of the Brattleboro strain, with increased oxytocin release, showed significantly decreased levels of pituitary opiate peptides. We suggest that neuro-intermediate lobe opiate peptides may modulate the release of neurohypophysial antidiuretic peptides.  相似文献   

3.
The effect of CCK-8 (50 ng, i.c.v.) on the neurohypophysial vasopressin and oxytocin storage was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. In another experimental series rats dehydrated for three days were given CCK-8 in a daily i.c.v. dose of 50 ng. The neurohypophysial vasopressin and oxytocin content was bioassayed by pressor effect following Dekański or milk-ejection activity in vitro following van Dongen and Hays, respectively. The decrease of neurohypophysial vasopressin and oxytocin content, brought about by dehydration, was significantly less marked in animals treated with CCK-8. The depletion of neurohypophysial vasopressin and oxytocin content in haemorrhaged animals could be completely inhibited by earlier i.c.v. administration of CCK-8. It is suggested that hypothalamic cholecystokinin may serve as a modulator of neurohypophysial function.  相似文献   

4.
Galanin (Gal) as a neuropeptide with widespread distribution in the central nervous system may be involved in the mechanisms of vasopressin (AVP) and oxytocin (OT) release from the hypothalamo-neurohypophysial system. Vasopressin and oxytocin content in the hypothalamus and neurohypophysis as well as plasma level of both neurohormones were studied after galanin treatment in euhydrated and dehydrated rats. In not dehydrated rats intracerebroventricular (i.c.v.) injections of Gal did not affect the hypothalamic and neurohypophysial OT content, however, distinctly increased plasma OT concentration. In the same animals Gal diminished the hypothalamic AVP content but was without the effect on neurohypophysial AVP storage; plasma AVP level then raised. Galanin, administered i.c.v. to rats deprived of water, distinctly inhibited AVP and OT release from the hypothalamo-neurohypophysial system. Simultaneously, plasma AVP and OT level was significantly diminished after Gal treatment in dehydrated rats. These results suggest that modulatory effect of galanin on vasopressin and oxytocin release depends on the actual state of water metabolism. Gal acts as an inhibitory neuromodulator of AVP and OT secretion under conditions of the dehydration but stimulates this process in the state of equilibrated water metabolism.  相似文献   

5.
Rats euhydrated or dehydrated for four days were given intracerebroventricular insulin once daily in a dose of 100 ng (not affecting blood sugar level). In euhydrated rats, insulin decreased significantly the neurohypophysial vasopressin content. In dehydrated animals the neurohypophysial content depleted by deprivation of water could be further reduced by intracerebroventricular treatment with insulin. These results may suggest a possible regulatory role of brain insulin in the mechanisms of vasopressin release.  相似文献   

6.
Since the thyrotropin-releasing hormone (TRH) can modulate the processes of vasopressin (AVP) and oxytocin (OT) biosynthesis and release mainly at the hypothalamo-neurohypophysial level, the present experiments were undertaken to estimate whether TRH, administered intravenously in different doses, modifies these mechanisms under conditions of osmotic stimulation, brought about by dehydration. AVP and OT contents in the hypothalamus and neurohypophysis as well as plasma levels of AVP, OT, free thyroxine (FT4) and free triiodothyronine (FT3) were studied after intravenously TRH treatment in euhydrated and dehydrated for two days male rats. Under conditions of equilibrated water metabolism TRH diminished significantly the hypothalamic and neurohypophysial AVP and OT content but was without the effect on plasma oxytocin level; however, TRH in a dose of 100 ng/100 g b.w. raised plasma AVP level. TRH, injected i.v. to dehydrated animals, resulted in a diminution of AVP content in the hypothalamus but did not affect the hypothalamic OT stores. After osmotic stimulation, neurohypophysial AVP and OT release was significantly restricted in TRH-treated rats. Under the same conditions, injections of TRH were followed by a significant decrease of plasma OT level. I.v. injected TRH enhanced somewhat FT3 concentration in blood plasma of euhydrated animals but diminished FT4 plasma level during dehydration. Data from the present study suggest that TRH displays different character of action on vasopressin and oxytocin secretion in relation to the actual state of water metabolism.  相似文献   

7.
The hypothalamic and neurohypophysial vasopressor and oxytocic content as influenced by alpha-adrenergic blockade in stressed rats. Acta physiol. pol., 1985, 36 (3): 193-200. The effects of phenoxybenzamine (PBA; an alpha-adrenergic blocker) on hypothalamic and neurohypophysial vasopressin and oxytocin were investigated in stressed rats. Immobilization resulted in a decrease of both vasopressor and oxytocic activities in the hypothalamus and neurohypophysis, whereas in rats, exposed to cold the vasopressin and oxytocin content in the hypothalamo-neurohypophysial system was increased. Under treatment with PBA the vasopressin and oxytocin content in the neurohypophysis was diminished in stressed (both immobilized and cold-exposed) rats when compared to respective groups of untreated animals subjected to appropriate kind of stress. The response of the vasopressinergic and oxytocinergic neurones seems, therefore, to be dependent on the type of stress. The alpha-adrenergic transmission is probably in some way involved in the mechanisms of modified neurohypophysial function in stressed animals.  相似文献   

8.
The effect of centrally administered galanin (Gal; 100 pM i.c.v.) on the hypothalamo-neurohypophysial storage as well as blood plasma level of vasopressin and oxytocin was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. Gal i.c.v. treatment did not alter vasopressin and oxytocin content both in the hypothalamus and neurohypophysis as well as their concentration in blood plasma of not haemorrhaged rats. Haemorrhage decreased the hypothalamic and neurohypophysial vasopressin and oxytocin storage but increased the neurohormones plasma level in animals injected with vehicle solution. During the haemorrhage, the increase in plasma vasopressin and oxytocin was inhibited in rats previously treated i.c.v. with galanin. The hypothalamic and neurohypophysial vasopressin as well as oxytocin content significantly increased in animals treated with galanin and subsequently haemorrhaged. These results suggest that galanin may have a regulatory role in the hypothalamo-neurohypophysial function especially under condition of hypovolemia.  相似文献   

9.
In dehydrated rats both neurohypophysial hormones diminished in hypothalamus as well as in the neurohypophysis. Oxytocin disappearef from the hypothalamus and neurohypophysis at a more rapid rate than vasopressin did. The minimal content of vasopressin and oxytocin in the hypothalamus was observed during 3rd--4th day, but even in extreme dehydration it was found to be relatively high: 65 per cent of vasopressin and 27 per cent of oxytocin as compared with intact animals. At that time the neurohypophysial vasopressin and oxytocin content were almost fully exhausted. In dehydrated and additionally reserpinized animals (10 mg/kg intraperitoneally, then each 48 hr 5 mg/kg of initial body weight) the vasopressin and and oxytocin hypothalamus and neurohypophysis changed in a similar manner. In some experimental groups the decrease of neurohormones in both sites was more marked under reserpine treatment. The drug seems therefore rather to potentiate the effects of physiological stimulation of osmodetectors. So the existence of monoaminergic stimulatory synapses, directly involved in the neural pathway between the osmodetector and the neurosecretory cell, appears to be hardly probable.  相似文献   

10.
Rats dehydrated up to 12 days were given intraperitoneally methoxamine hydrochloride in a daily dose of 1.0 mg/100 g of initial body weight. The only dose of methoxamine injected into normally hydrated animals did not influence significantly the oxytocic activity neither in the hypothalamus nor in the neural lobe. Following four days of dehydration a distinctly more marked depletion of the hypothalamic (both in the NSO and NPV region) and neurohypophysial oxytocin content was found in animals treated with methoxamine. For the neurohypophysis, a similar effect has been noted under severe dehydration (8th and 12th day) as well.  相似文献   

11.
Chronic tobacco smoke exposure in the rat was followed by a distinct decrease of both hypothalamic and neurohypophysial oxytocic activity as well as of neurohypophysial vasopressor activity. It is assumed that tobacco smoke exposure increases the release of both neurohypophysial hormones under conditions of chronic experiment.  相似文献   

12.
1. The in vitro incorporation of 35S-methionine into actin and total soluble proteins, as well as the levels of actin mRNA, were studied in the hypothalamus and frontal cerebral cortex of adult male rats killed at six different time intervals during a 24-hr cycle. 2. The specific activity of total soluble proteins after labeled methionine incubations did not vary as a function of time of day in any of the examined brain regions. 3. The incorporation of 35S-methionine into a 43-kDa protein, corresponding to the electrophoretic mobility of actin, varied diurnally in the hypothalamus, exhibiting a maximum at 1200 hr. Such a diurnal variation was not found in frontal cerebral cortex. 4. Similar results were obtained when labeled methionine incorporation into actin was assessed in hypothalamus and cerebral cortex by an immunoprecipitation procedure. 5. An increase in actin hypothalamic mRNA levels, quantitated by dot-blot analysis, was found at 0800, 4 hr in advance to the maximum in 35S-methionine incorporation to actin. 6. The levels of actin mRNA did not vary significantly as a function of time of day in the frontal cerebral cortex.  相似文献   

13.
Taurine in the osmoregulation of the Brattleboro rat   总被引:3,自引:0,他引:3  
The function of taurine in mammalian osmoregulation was studied in the Brattleboro rat with hereditary hypothalamic diabetes insipidus (DI). DI rats are chronically dehydrated because of their inability to synthesize vasopressin. One day of water deprivation did not affect the water balance in rats with normal vasopressin synthesis, whereas DI rats were markedly dehydrated and lost considerably body weight. Taurine content and 3H-taurine accumulation by platelets were significantly higher in DI rats, with a further increase after one day of water deprivation. In DI rats, water deprivation also evoked a clear taurine increase in skeletal muscle and in the brain. These findings indicate that taurine has an osmoregulatory function in mammals.  相似文献   

14.
All of the classically-described hypothalamic, hypophysiotropic factors that regulate anterior pituitary hormone secretion have now been isolated and identified except for prolactin releasing factor. We report here that the 39-amino acid glycopeptide comprising the carboxyterminus of the neurohypophysial vasopressin-neurophysin precursor stimulates prolactin release from cultured pituitary cells as potently as does thyrotropin releasing hormone but has no effect on the secretion of other pituitary hormones. Furthermore, antisera to the glycopeptide administered to lactating rats attenuated suckling-induced prolactin secretion. Thus, this glycopeptide appears to be the neurohypophysial prolactin releasing factor.  相似文献   

15.
The endothelins (ET) have been implicated in vasopressin (AVP) release in vivo and in vitro. The effects of ET in this system are complex, and the net AVP secretory response likely depends on a unique combination of ET isoform, ET receptor subtype, and neural locus. The purpose of these studies was to examine the role of ET receptor subtypes at hypothalamic vs. neurohypophysial sites on somatodendritic and neurohypophysial AVP secretion. Experiments were done in cultured explants of the hypothalamo-neurohypophysial system of Long Evans rats. Either the whole explant (standard) or only the hypothalamus or posterior pituitary (compartmentalized) was exposed to log dose increases (0.01-10 nM) of the agonists ET-1 (ET(A) selective), ET-3 (nonselective), or IRL-1620 (ET(B) selective) with or without selective ET(A) (BQ-123, 2-200 nM) or ET(B) (IRL-1038, 6-600 nM) receptor antagonism. In standard explants, ET-1 and ET-3 dose-dependently increased, whereas IRL-1620 decreased net AVP release. Hypothalamic ET(B) receptor activation increased both somatodendritic and neurohypophysial AVP release. At least one intervening synapse was involved, as tetrodotoxin blocked the response. Activation of ET(A) receptors at the hypothalamic level inhibited, whereas ET(A) receptor activation at the posterior pituitary stimulated, neurohypophysial AVP secretion. Antagonism of hypothalamic ET(A) receptors potentiated the stimulatory effect of ET-1 and ET-3 on neurohypophysial secretion, an effect not observed with ET(B) receptor-induced somatodendritic release of AVP. Thus the response of whole explants reflects the net result of both stimulatory and inhibitory inputs. The integration of these excitatory and inhibitory inputs endows the vasopressinergic system with greater plasticity in its response to physiological and pathophysiological states.  相似文献   

16.
In rats dehydrated up to 12 days the neurohypophysial vasopressin content was determined by Dekański's method. Carbamylcholine inhibited somewhat the vasopressin depletion in the neurohypophysis, but not earlier than under severe dehydration (8th and 12th day). A single dose of atropine given 24 h prior to sacrifice to not dehydrated animals resulted in a diminution of the vasopressin content in the neurohypophysis; in animals dehydrated for four days and parallely atropinized the decrease of the neurohypophyseal vasopressin content was, on the contrary, considerably inhibited. Under severe dehydration, the treatment with atropine did not change the vasopressin stores in the neural lobe. Phenoxybenzamine inhibited the vasopressin depletion in the neural lobe following four days of dehydration. Under severe dehydration, amphetamine potentiated the effect of osmoreceptor stimulation. It is supposed that impulses of osmoreceptor origin are of some importance in determining the vasopressin release following changes of cholinergic or adrenergic transmission.  相似文献   

17.
D M Gibbs 《Life sciences》1984,35(5):487-491
Oxytocin (OT), vasopressin (AVP), and corticotropin (ACTH) levels were measured in peripheral plasma of male rats subjected to one of three models of stress: restraint, cold, or ether. ACTH secretion was increased in all three groups compared to unstressed controls. OT secretion was increased in rats subjected to restraint or ether but not cold. AVP secretion was increased only by ether stress. The data suggest that the hypothalamic and neurohypophysial contribution to the control of ACTH secretion may vary in response to different types of stress.  相似文献   

18.
Human intestinal trefoil factor hITF, a polypeptide of the P-domain family, was found to occur in hypothalamic neurons. With combined immunofluorescence and immunoperoxidase technique we investigated the coexistence of hITF with the neurohypophysial peptide oxytocin and the associated neurophysin I in sections of the human hypothalamus. In the supraoptic nucleus, 39.2% of magnocellular oxytocinergic perikarya show hITF immunoreactivity. A similar distribution was observed in perivascular hypothalamic oxytocinergic neurons, whereas in the paraventricular nucleus, 99% of the oxytocinergic neurons show hITF coexpression. In the periventricular nucleus (PEV), single, scattered neurons with both immunoreactivities occur. Our findings indicate that hITF and oxytocin are coexpressed in a portion of the magnocellular neurons in the human hypothalamus, and that hITF is among the neurohypophysial peptides.  相似文献   

19.
1. Rat neurohypophysial extracts have been examined by polyacrylamide-gel electrophoresis. 2. Three of the proteins were tentatively identified as neurophysins by their acidic nature and their disappearance after dehydration of the animals. 3. These proteins were radioactive 24h after intracisternal injection of [(35)S]cysteine. 4. Two of the proteins were present in much greater quantities than the third, and these two were present in the gland in the same ratio as the hormones vasopressin and oxytocin. 5. One of these proteins was absent from glands of rats homozygous for diabetes insipidus but present in heterozygous animals. 6. It is suggested that these two proteins are the vasopressin-neurophysin and oxytocin-neurophysin of the rat.  相似文献   

20.
Kekki  M.  Attila  U.  Talanti  S. 《Cell and tissue research》1975,158(4):439-450
Thirst stimulation of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) was induced in rats by withholding all fluids during three days. 35S-cysteine was then intraperitoneally administered and the rats were killed at predetermined times and examined by autoradiography, applying the authors' previously described method. This experimental series totalling 51 animals was compared with a control series of 70 rats, similarly treated, who had had free access to water. The kinetic phenomena in SON and PVN were analysed in terms of the two-compartment model previously used, which gives an estimate of the neurosecretory material (NSM) secretion parameters and of those of the lumped structural cell protein turnover in the nuclei. The kinetics of the precursor amino acids after administration of labelled cysteine were also assessed. Determinations of the label uptake at two specific times in the experiment, in the infundibular nucleus, ventromedial nucleus and optic nerve tissue in both series served as a check on the specifity of the structural protein turnover changes observed. Compared with the controls, the turnover rate of the slow compartment was more than tripled in the dehydrated rats, while that of the fast compartment had gone down to about one-third; both effects very nearly equal in SON and PVN. These results are compatible with the concept according to which thirst stimulates the SON and PVN equally. A distinct, and strikingly equal, hump was observed (2 hours after label administration) in all specific activity curves, also in the precursor serum concentration, and it is probably due to recycling of 35s from cysteine to methionine. This and other circumstances render the phenomena rather too complex for a straight-forward evaluation by the two-compartment model. Even so, the observations are believed to furnish good evidence of the biological verity of this model as well as the thirst-induced changes elicited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号