首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The adhesion of Plasmodium falciparum-infected erythrocytes (IEs) to chondroitin-4-sulfate (CSA) via the PfEMP1-CSA parasite ligand domain is correlated with placental malaria in primigravidae. The recent identification of parasite genes encoding CSA adhesion molecules and the development of pan-reactive monoclonal antibodies against the Pf(CSA) ligand have opened up new avenues for the development of anti-IE sequestration therapies for the prevention of placental malaria. A model closely mimicking placental sequestration of IEs during pregnancy is needed for the preclinical and clinical evaluation of candidate molecules for the induction of antibodies that could protect pregnant women from placental malaria. We found that normal placenta cryosections were a specific and highly consistent support for the binding of IEs to CSA in flow conditions under physiological conditions. This model makes possible the quantitative and qualitative analysis of IE adhesion. We identified distinct CSA-binding phenotypes within the FCR3(CSA)-selected parasites in flow analyses, but not in static analyses. We also analyzed inhibitors of placental parasite binding such as soluble CSA and antibodies directed against the Pf(CSA) ligand. Our data demonstrate that placenta cryosections could be used to standardize assays between laboratories, potentially advancing the development of therapies against placental malaria.  相似文献   

2.
Plasmodium falciparum parasites that sequester in the placenta bind to the molecule chondroitin sulfate A (CSA). Women become resistant to malaria during pregnancy as they acquire antibodies that inhibit parasite adhesion to CSA, suggesting that a vaccine against placental malaria is feasible. Hyaluronic acid (HA) and non-immune IgG have also been proposed as receptors for P. falciparum adhesion in the placenta, but evidence for their roles is inconclusive. In this study, CSA, HA, and IgG were simultaneously assessed for their relative contributions to placental adhesion. Placental parasites collected in Tanzania uniformly adhered to the molecule CSA, and soluble CSA completely inhibited adhesion of most samples to placental cryosections. Three of 46 placental parasite samples also adhered to immobilized HA, but HA failed to inhibit adhesion of any placental parasites to placental cryosections. Similarly, non-immune IgG and protein A failed to inhibit adhesion of parasite samples to placental cryosection. P. falciparum adhesion in the placenta appears to be a non-redundant process that requires CSA as a receptor. Vaccines that elicit functional antibodies against CSA-binding parasites may confer resistance to pregnancy malaria.  相似文献   

3.
Pregnancy-associated malaria (PAM) is associated with the massive sequestration of erythrocytes infected with CSA-binding parasites in the placenta. Natural protective immunity against PAM is acquired during the course of pregnancies, with the development of anti-PfEMP1 antibodies recognizing placental infected erythrocytes (IEs) from different geographical regions. Mouse monoclonal antibodies (mabs) were raised against Plasmodium falciparum variant surface proteins expressed by CSA-binding parasites. These mabs blocked 0-60% of CSA-binding parasite adhesion and immunoprecipitated a 350 kDa 125I-labeled PfEMP1(CSA). Two var2CSA domains expressed on the surface of CHO cells (DBL5epsilon and DBL6epsilon) were identified as the targets of three of four antibodies inhibiting CSA binding. Two of these antibodies also recognized either DBL2x or DBL3x, suggesting that some epitopes may be common to several var2CSA domains. These mabs also specifically selected CSA-binding IEs and facilitated the purification from IE extracts of the native var2CSA ligand. This purified ligand elicited antibodies in immunized mice inhibiting efficiently IE(CSA) cytoadhesion. Based on our findings, we provide the first demonstration that the parasite var2CSA surface protein can elicit inhibitory antibodies and define here the subunits of the var2CSA ligand suitable for use in vaccine development.  相似文献   

4.
The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species.  相似文献   

5.
Protection against maternal malaria has been associated with the acquisition of a specific antibody response that prevents adhesion of Plasmodium falciparum-infected erythrocytes to the glycosaminoglycan chondroitin-4-sulphate (CSA), which is present in the placental intervillous space. These antibodies are directed against variant forms of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) that mediate binding to CSA. We have generated insertional disruption mutants of the gene encoding the CSA-binding phenotype in the P. falciparum clone FCR3 (varCSA) to test the hypothesis that strategies targeting the parasite's determinant for this adhesive phenotype may prevent sequestration of infected erythrocytes in the placenta and hence the development of maternal malaria. The varCSA-disruption mutants were initially unable to adhere to CSA; however, they could recover the phenotype after repeated selection over CSA. We show that recovery of CSA binding is varCSA independent and mediated by the activation of a novel var variant. Importantly, the corresponding PfEMP1 protein reacts with a monoclonal antibody recognizing the DBL3 gamma domain of the varCSA gene product, indicating that the DBL3 gamma CSA-binding domains are conserved between these PfEMP1-binding variants. Our data support strategies exploring these conserved epitopes as vaccine candidates against maternal malaria.  相似文献   

6.
Individuals living in areas with high Plasmodium falciparum transmission acquire immunity to malaria over time and adults have a markedly reduced risk of contracting severe disease. However, pregnant women constitute an important exception. Pregnancy-associated malaria is a major cause of mother and offspring morbidity, such as severe maternal anaemia and low birth-weight, and is characterised by selective accumulation of parasite-infected erythrocytes (IE) in the placenta. A P. falciparum protein named VAR2CSA, which belongs to the large P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family, enables the IE to bind chondroitin sulphate A (CSA) in the placenta. Knock-out studies have demonstrated the exclusive capacity of VAR2CSA to mediate IE binding to CSA, and it has been shown that four of the six Duffy-binding-like (DBL) domains of VAR2CSA have the ability to bind CSA in vitro. In this study, we confirm the CSA-binding of these DBL domains, however, the analysis of a number of DBL domains of a non-VAR2CSA origin shows that CSA-binding is not exclusively restricted to VAR2CSA DBL domains. Furthermore, we show that the VAR2CSA DBL domains as well as other DBL domains also bind heparan sulphate. These data explain a number of publications describing CSA-binding domains derived from PfEMP1 antigens not involved in placental adhesion. The data suggest that the ability of single domains to bind CSA does not predict the functional capacity of the whole PfEMP1 and raises doubt whether the CSA-binding domains of native VAR2CSA have been correctly identified.  相似文献   

7.

Background

Pregnancy malaria is caused by Plasmodium falciparum -infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant to placental malaria as antibodies are acquired which specifically target the surface of infected erythrocytes binding in the placenta. VAR2CSA is most likely the parasite-encoded protein which mediates binding to the placental receptor CSA. Several domains have been shown to bind CSA in vitro; and it is apparent that a VAR2CSA-based vaccine cannot accommodate all the CSA binding domains and serovariants. It is thus of high priority to define minimal ligand binding regions throughout the VAR2CSA molecule.

Methods

To define minimal CSA-binding regions/peptides of VAR2CSA, a phage display library based on the entire var2csa coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected erythrocytes.

Results

The most frequently identified phages expressed peptides residing in the parts of VAR2CSA previously defined as CSA binding. In addition, most of the binding regions mapped to surface-exposed parts of VAR2CSA. The binding of a DBL2X peptide to CSA was confirmed with a synthetic peptide. Antibodies against a CSA-binding DBL2X peptide reacted with the surface of infected erythrocytes indicating that this epitope is accessible for antibodies on native VAR2CSA on infected erythrocytes.

Conclusion

Short continuous regions of VAR2CSA with affinity for multiple types of CSA were defined. A number of these regions localize to CSA-binding domains and to surface-exposed regions within these domains and a synthetic peptide corresponding to a peptide sequence in DBL2 was shown to bind to CSA and not to CSC. It is likely that some of these epitopes are involved in native parasite CSA adhesion. However, antibodies directed against single epitopes did not inhibit parasite adhesion. This study supports phage display as a technique to identify CSA-binding regions of large proteins such as VAR2CSA.  相似文献   

8.
Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies.  相似文献   

9.
Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.  相似文献   

10.
The complications of malaria in pregnancy are caused by the massive sequestration of parasitized erythrocytes (PE) in the placenta. Placental isolates of Plasmodium falciparum are unusual in that they do not bind the primary microvasculature receptor CD36 but instead bind chondroitin sulphate A (CSA). Pregnant mothers develop antibodies that recognize placental variants worldwide, suggesting that a vaccine against malaria in pregnancy is possible. Some members of the Duffy binding-like gamma (DBL-gamma) domain of the large and diverse P. falciparum erythrocyte membrane protein-1 (PfEMP-1) family, when expressed on Chinese hamster ovary (CHO) cells, bind CSA. To characterize better the molecular requirements for DBL-gamma adhesion to CSA, we determined the binding of various DBL-gamma domains. Most DBL-gamma did not bind CSA, and no conserved region was identified that strictly differentiated binders from non-binders. Structure-function analysis of the FCR3-CSA DBL-gamma domain localized the minimal CSA binding region to a 67-residue fragment. This region was partially conserved among some binding sequences. Serum from a rabbit immunized with the minimal domain reacted with CSA-binding parasite lines, but not with non-CSA-adherent PE lines that adhered to CD36 and other receptors. The identification of a minimal binding region from a highly variable cytoadherent family may have application for a vaccine against malaria in pregnancy.  相似文献   

11.
Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified.  相似文献   

12.
Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated by a parasite expressed protein named VAR2CSA. A vaccine protecting pregnant women against placental malaria should induce antibodies inhibiting the interaction between VAR2CSA and CSA. Much effort has been put into defining the part of the 350 kDa VAR2CSA protein that is responsible for binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with high affinity, however to date no sub-fragment of VAR2CSA has been shown to interact with CSA with similar affinity or specificity. In this study, we used a biosensor technology to examine the binding properties of a panel of truncated VAR2CSA proteins. The experiments indicate that the core of the CSA-binding site is situated in three domains, DBL2X-CIDR(PAM) and a flanking domain, located in the N-terminal part of VAR2CSA. Furthermore, recombinant VAR2CSA subfragments containing this region elicit antibodies with high parasite adhesion blocking activity in animal immunization experiments.  相似文献   

13.
Malaria during pregnancy in Plasmodium falciparum endemic regions is a major cause of mortality and severe morbidity. VAR2CSA is the parasite ligand responsible for sequestration of Plasmodium falciparum infected erythrocytes to the receptor chondroitin sulfate A (CSA) in the placenta and is the leading candidate for a placental malaria vaccine. Antibodies induced in rats against the recombinant DBL4ε domain of VAR2CSA inhibit the binding of a number of laboratory and field parasite isolates to CSA. In this study, we used a DBL4ε peptide-array to identify epitopes targeted by DBL4ε-specific antibodies that inhibit CSA-binding of infected erythrocytes. We identified three regions of overlapping peptides which were highly antigenic. One peptide region distinguished itself particularly by showing a clear difference in the binding profile of highly parasite blocking IgG compared to the IgG with low capacity to inhibit parasite adhesion to CSA. This region was further characterized and together these results suggest that even though antibodies against the synthetic peptides which cover this region did not recognize native protein, the results using the mutant domain suggest that this linear epitope might be involved in the induction of inhibitory antibodies induced by the recombinant DBL4ε domain.  相似文献   

14.
Chondroitin sulfate A (CSA) present in the placental intervillous blood spaces has been described as the main receptor involved in the massive sequestration of Plasmodium falciparum parasitized erythrocytes to the placenta. Placental parasite isolates are functionally distinct from isolates that sequester in other organs, because they do not cytoadhere to CD36 but instead bind to CSA. To investigate for the parasites molecules associated with the CSA adhesion phenotype, different methodologies have been developed to select for CSA-binding lines in vitro mainly using non-placental sources of CSA that differ in their sulfation pattern. In this study, we show that the human trophoblastic BeWo cell line is a very efficient alternative to select for the CSA-binding phenotype in parasitized erythrocytes.  相似文献   

15.
In malaria endemic areas, regardless of immunity acquired during lifelong exposure to malaria, pregnant women become susceptible to Plasmodium falciparum infections. Malaria during pregnancy is associated with a massive sequestration of infected erythrocytes in the placenta and the emergence of a unique parasite-derived adhesive molecule (encoded by var2CSA) that binds to chondroitin sulfate A (CSA). How P. falciparum achieves the timely expression of the CSA ligand in pregnant women remains puzzling. We investigated whether host serum-specific factors present only during pregnancy may induce var2CSA expression. Our panel of experiments did not reveal significant changes in var2CSA levels and CSA-binding capacity.  相似文献   

16.
Molecular mechanisms of Plasmodium falciparum placental adhesion   总被引:2,自引:0,他引:2  
In natural Plasmodium falciparum infections, parasitized erythrocytes (PEs) circulate in the peripheral blood for a period corresponding roughly to the first part of the erythrocytic life cycle (ring stage). Later, in blood-stage development, parasite-encoded adhesion molecules are inserted into the erythrocyte membrane, preventing the circulation of the PEs. The principal molecule mediating PE adhesion is P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var gene family. The population of parasites is subject to clonal antigenic variation through changes in var expression, and a single PfEMP1 variant is expressed at the PE surface in a mutually exclusive manner. In addition to its role in immune evasion, switches in PfEMP1 expression may be associated with fundamental changes in parasite tissue tropism in malaria patients. A switch from CD36 binding to chondroitin sulphate A (CSA) binding may lead to extensive sequestration of PEs in placenta syncytiotrophoblasts. This is probably a key event in malaria pathogenesis during pregnancy. The CSA-binding phenotype of mature PEs is linked to another distinct adhesive phenotype: the recently described CSA-independent cytoadhesion of ring-stage PEs. Thus, a subpopulation of PEs that sequentially displays these two different phenotypes may bind to an individual endothelial cell or syncytiotrophoblast throughout the asexual blood-stage cycle. This suggests that non-circulating (cryptic) parasite subpopulations are present in malaria patients.  相似文献   

17.
Surface proteins from Plasmodium falciparum are important malaria vaccine targets. However, the surface proteins previously identified are highly variant and difficult to study. We used tandem mass spectrometry to characterize the variant antigens (Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)) expressed on the surface of malaria-infected erythrocytes that bind to chondroitin sulfate A (CSA) in the placenta. Whereas PfEMP1 variants previously implicated as CSA ligands were detected, in unselected parasites four novel variants were detected in CSA-binding or placental parasites but not in unselected parasites. These novel PfEMP1 variants require further study to confirm whether they play a role in placental malaria.  相似文献   

18.
Var2CSA, a key molecule linked with pregnancy-associated malaria (PAM), causes sequestration of Plasmodium falciparum infected erythrocytes (PEs) in the placenta by adhesion to chondroitin sulfate A (CSA). Var2CSA possesses a 300 kDa extracellular region composed of six Duffy-binding like (DBL) domains and a cysteine-rich interdomain region (CIDRpam) module. Although initial studies implicated several individual var2CSA DBL domains as important for adhesion of PEs to CSA, new studies revealed that these individual domains lack both the affinity and specificity displayed by the full-length extracellular region. Indeed, recent evidence suggests the presence of a single CSA-binding site formed by a higher-order domain organization rather than several independent binding sites located on the different domains. Here, we search for the minimal binding region within var2CSA that maintains high affinity and specificity for CSA binding, a characteristic feature of the full-length extracellular region. Accordingly, truncated recombinant var2CSA proteins comprising different domain combinations were expressed and their binding characteristics assessed against different sulfated glycosaminoglycans (GAGs). Our results indicate that the smallest region within var2CSA with similar binding properties to those of the full-length var2CSA is DBL1X-3X. We also demonstrate that inhibitory antibodies raised in rabbit against the full-length DBL1X-6ε target principally DBL3X and, to a lesser extent, DBL5ε. Taken together, our results indicate that efforts should focus on the DBL1X-3X region for developing vaccine and therapeutic strategies aimed at combating PAM.  相似文献   

19.
Infection with Plasmodium falciparum during pregnancy is one of the major causes of malaria related morbidity and mortality in newborn and mothers. The complications of pregnancy-associated malaria result mainly from massive adhesion of Plasmodium falciparum-infected erythrocytes (IE) to chondroitin sulfate A (CSA) present in the placental intervillous blood spaces. Var2CSA, a member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is the predominant parasite ligand mediating CSA binding. However, experimental evidence suggests that other host receptors, such as hyaluronic acid (HA) and the neonatal Fc receptor, may also support placental binding. Here we used parasites in which var2csa was genetically disrupted to evaluate the contribution of these receptors to placental sequestration and to identify additional adhesion receptors that may be involved in pregnancy-associated malaria. By comparison to the wild-type parasites, the FCR3delta var2csa mutants could not be selected for HA adhesion, indicating that var2csa is not only essential for IE cytoadhesion to the placental receptor CSA, but also to HA. However, further studies using different pure sources of HA revealed that the previously observed binding results from CSA contamination in the bovine vitreous humor HA preparation. To identify CSA-independent placental interactions, FCR3delta var2csa mutant parasites were selected for adhesion to the human placental trophoblastic BeWo cell line. BeWo selected parasites revealed a multi-phenotypic adhesion population expressing multiple var genes. However, these parasites did not cytoadhere specifically to the syncytiotrophoblast lining of placental cryosections and were not recognized by sera from malaria-exposed women in a parity dependent manner, indicating that the surface molecules present on the surface of the BeWo selected population are not specifically expressed during the course of pregnancy-associated malaria. Taken together, these results demonstrate that the placental malaria associated phenotype can not be restored in FCR3delta var2csa mutant parasites and highlight the key role of var2CSA in pregnancy malaria pathogenesis and for vaccine development.  相似文献   

20.
In high-transmission regions, protective clinical immunity to Plasmodium falciparum develops during the early years of life, limiting serious complications of malaria in young children. Pregnant women are an exception and are especially susceptible to severe P. falciparum infections resulting from the massive adhesion of parasitized erythrocytes to chondroitin sulphate A (CSA) present on placental syncytiotrophoblasts. Epidemiological studies strongly support the feasibility of an intervention strategy to protect pregnant women from disease. However, different parasite molecules have been associated with adhesion to CSA. In this work, we show that disruption of the var2csa gene of P. falciparum results in the inability of parasites to recover the CSA-binding phenotype. This gene is a member of the var multigene family and was previously shown to be composed of domains that mediate binding to CSA. Our results show the central role of var2CSA in CSA adhesion and support var2CSA as a leading vaccine candidate aimed at protecting pregnant women and their fetuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号