首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Microcarrier cell culture process can be used to culture anchorange-dependent cells in large bioreactor vessels. The process performance in large bioreactors is usually less prominent than that in spinner flask vessels and bench scale reactors. In this study we investigated the microcarrier cell culture processes in 100?ml spinner flask and 15-liter bioreactor cultures, including the kinetics for cell attachment, cell growth and the production of Japanese encephaltilis vaccine strain (Beijing-1) virus. Under a fixed concentration of microcarrier and cell density used in inoculations, the attachment kinetics of Vero cells on Cytodex 1 microcarrier in a 15-liter bioreactor vessel was 2 folds slower than with 100?ml spinner flask culture. Virus replication in 15-liter bioreactor culture also revealed an approximately one day lag-time compared to 100?ml spinner flask culture. Findings presented herein provide valuable information for designing and operating microcarrier cell culture processes in large bioreactor vessels.  相似文献   

2.
In order to achieve a steady-state primary culture system for mammalian cells, with the potential to eventually correlate and control cell function and growth, a serious evaluation of various suspension systems was made. Calf anterior pituitary cells were employed as a differentiated cell type and successfully cultivated in a microcarrier suspension culture system. DEAE-Sephadex was demonstrated to be a satisfactory type of microcarrier. The cells readily attached to the bead and, after a short lag period, they actively proliferated on the bead surface to yield growth of a predominantly epithelial cell type. Under specific conditions the microcarrier supported primary cell growth up to levels of 2 × 106 cells per ml. High bead concentrations inhibited cell growth. The inhibition could be overcome by using proportionately higher cell inoculum so that a concentrated culture with 5 × 106 cells per ml was achieved. The inhibitory effect of high bead concentration was found to be due to the absorption of serum protein and certain growth enhancing factors. The fact that the growth enhancing factors were released from cells during the period of trypsinization and were both thermostable and nondialyzable, seems to suggest one approach to a dialysis culture system. In addition, relatively trauma-free primary cell cultures can be achieved by using explant culture without prior trypsinization. In microcarrier suspensions direct growth of primary rat mammary tumor cells was also demonstrated.  相似文献   

3.
An assay for measuring the number of adherent cells on microcarriers that is independent from dilution errors in sample preparation was used to investigate attachment dynamics and cell growth. It could be shown that the recovery of seeded cells is a function of the specific rates of cell attachment and cell death, and finally a function of the initial cell‐to‐bead ratio. An unstructured, segregated population balance model was developed that considers individual classes of microcarriers covered by 1–220 cells/bead. The model describes the distribution of initially attached cells and their growth in a microcarrier system. The model distinguishes between subpopulations of dividing and nondividing cells and describes in a detailed way cell attachment, cell growth, density‐dependent growth inhibition, and basic metabolism of Madin‐Darby canine kidney cells used in influenza vaccine manufacturing. To obtain a model approach that is suitable for process control applications, a reduced growth model without cell subpopulations, but with a formulation of the specific cell growth rate as a function of the initial cell distribution on microcarriers after seeding was developed. With both model approaches, the fraction of growth‐inhibited cells could be predicted. Simulation results of two cultivations with a different number of initially seeded cells showed that the growth kinetics of adherent cells at the given cultivation conditions is mainly determined by the range of disparity in the initial distribution of cells on microcarriers after attachment. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
For the cultivation of mammalian cells on microcarriers a minimum inoculum concentration is required to initiate cell attachment and subsequent cell growth. A critical cell number model has been proposed to elucidate the mechanism of the inoculum requirement. In this model it was hypothesized that after inoculation a critical number of cells per microcarrier is required for normal growth to occur; failure to acquire enough cells will impede cell growth. This critical cell number model was expressed mathematically and used to simulate cell distribution and growth on microcarriers under different cultivation conditions. By comparing the simulated growth kinetics with the experimental results, the actual critical cell number per microcarrier was identified. The critical number could be reduced by employing an improved medium for the cultivation.  相似文献   

5.
A deterministic/probabilistic model of the cell division cycle is analysed mathematically and compared to experimental data and to other models of the cell cycle. The model posits a random-exiting phase of the cell cycle and a minimum-size requirement for entry into the random-exiting phase. By design, the model predicts exponential "beta-curves", which are characteristic of sister cell generation times. We show that the model predicts "alpha-curves" with exponential tails and hyperbolic-sine-like shoulders, and that these curves fit observed generation-time data excellently. We also calculate correlation coefficients for sister cells and for mother-daughter pairs. These correlation coefficients are more negative than is generally observed, which is characteristic of all size-control models and is generally attributed to some unknown positive correlation in growth rates of related cells. Next we compare theoretical size distributions with observed distributions, and we calculate the dependence of average cell mass on specific growth rate and show that this dependence agrees with a well-known relation in bacteria. In the discussion we argue that unequal division is probably not the source of stochastic fluctuations in deterministic size-control models, transition-probability models with no feedback from cell size cannot account for the rapidity with which the new, stable size distribution is established after perturbation, and Kubitschek's rate-normal model is not consistent with exponential beta-curves.  相似文献   

6.
On the lag phase and initial decline of microbial growth curves   总被引:1,自引:0,他引:1  
The lag phase is generally thought to be a period during which the cells adjust to a new environment before the onset of exponential growth. Characterizing the lag phase in microbial growth curves has importance in food sciences, environmental sciences, bioremediation and in understanding basic cellular processes. The goal of this work is to extend the analysis of cell growth curves and to better estimate the duration of the lag phase. A non-autonomous model is presented that includes actively duplicating cells and two subclasses of non-duplicating cells. The growth curves depend on the growth and death rate of these three subpopulations and on the initial proportion of each. A deterministic and a stochastic model are both developed and give the same results. A notable feature of the model is the decline of cells during the early stage of the growth curve, and the range of parameters when this decline occurs is identified. A limited growth model is also presented that accounts for the lag, exponential growth and stationary phase of microbial growth curves.  相似文献   

7.
Expansion of mouse embryonic stem cells on microcarriers   总被引:1,自引:0,他引:1  
Embryonic stem (ES) cells have been shown to differentiate in vitro into a wide variety of cell types having significant potential for tissue regeneration. Therefore, the operational conditions for the ex vivo expansion and differentiation should be optimized for large-scale cultures. The expansion of mouse ES cells has been evaluated in static culture. However, in this system, culture parameters are difficult to monitor and scaling-up becomes time consuming. The use of stirred bioreactors facilitates the expansion of cells under controlled conditions but, for anchorage-dependent cells, a proper support is necessary. Cytodex-3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks. The effect of inocula and microcarrier concentration on cell growth and metabolism were analyzed. Typically, after seeding, the cells exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to the maximum cell density of 2.5-3.9 x 10(6) cells/mL. Improved expansion was achieved using an inoculum of 5 x 10(4) cells/mL and a microcarrier concentration of 0.5 mg/mL. Medium replacement allowed the supply of the nutrients and the removal of waste products inhibiting cell growth, leading to the maintenance of the cultures in steady state for several days. These conditions favored the preservation of the S25 cells pluripotent state, as assessed by quantitative real-time PCR and immunostaining analysis.  相似文献   

8.
A simple kinetic model is developed to describe the dynamic behavior of myeloma cell growth and cell metabolism. Glucose, glutamine as well as lysine are considered as growth limiting substrates. The cell growth was restricted as soon as the extracellular lysine is exhausted and then intracellular lysine becomes a growth limiting substrate. In addition, a metabolic regulator model together with the Monod model is used to deal with the growth lag phase after inoculation or feeding. By using these models, concentrations of substrates and metabolites, as well as densities of viable and dead cells are quantitatively described. One batch cultivation and two fed-batch cultivations with pulse feeding of nutrients are used to validate the model.  相似文献   

9.
A cellular automaton model for microcarrier cultures   总被引:2,自引:0,他引:2  
In order to achieve high cell densities anchoragedependent cells are commonly cultured on microcarriers, where spatial restrictions to cell growth complicates the determination of the growth kinetics. To design and operate large-scale bioreactors for microcarrier cultures, the effect of this spatial restriction to growth, referred to as contact inhibition, must be decoupled from the growth kinetics. In this article, a cellular automaton approach is recommended to model the growth of anchorage-dependent cells on microcarriers. The proposed model is simple to apply yet provides an accurate representation of contact-inhibited cell growth on microcarriers. The distribution of the number of neighboring cells per cell, microcarrier surface areas, and inoculation densities are taken into account with this model. When compared with experimental data for Vero and MRC-5 microcarrier cultures, the cellular automaton predictions were very good. Furthermore, the model can be used to generate contact-inhibition growth curves to decouple the effect of contact-inhibition from growth kinetics. With this information, the accurate determination of kinetic parameters, such as nutrient uptake rates, and the effects of other environmental factors, such as toxin levels, may be determined. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Microcarriers are suitable for high-density cultures of cells requiring surface attachment and also offer the advantage of easy media removal for product recovery. We have used the macroporous microcarriers Cytopore 1 and 2 for the growth of CHO cells producing recombinant human beta-interferon (beta-IFN) in stirred batch cultures. Although these cells may grow in suspension, in the presence of Cytopore microcarriers they become entrapped in the inner bead matrix where they can be maintained at high densities. Cell growth rates were reduced in microcarrier cultures compared to suspension cultures. However, the beta-IFN yield was up to 3-fold greater as a result of an almost 5-fold higher specific productivity. Maximum productivity was found in cultures containing 1.0 mg/mL of Cytopore 1 or 0.5 mg/mL of Cytopore 2 with a cell/bead ratio of 1029 and 822, respectively. Beta-IFN molecules aggregated in the later stages of all cultures, causing a decrease in response by ELISA. However, the degree of aggregation was significantly less in the microcarrier cultures. The N-linked glycans from beta-IFN were isolated and analyzed by normal phase HPLC. There was no apparent difference in the profile of glycans obtained from each of the suspension and Cytopore culture systems. This suggests that Cytopore microcarriers may be useful in bioprocess development for enhanced recombinant glycoprotein production without affecting the glycosylation profile of the protein.  相似文献   

11.
Summary Vero and BHK-21 cells are not attached and spreaded equally on the same microcarrier. BHK-21 cells require a microenvironment similar to the mammalian tissue for attachment and spreading. Cellular affinity, which control adhesion to the surface, varied with the growth phase, membrane integrity and the type of microcarrier.  相似文献   

12.
Development of the optimal inoculation conditions for microcarrier cultures   总被引:3,自引:0,他引:3  
The environmental conditions under which anchorage-dependent mammalian cells are grown are not necessarily those under which a culture should be initiated. Cell attachment is a physical process, and those factors which affect forces involved in cell attachment differ from the biological factors which affect cell growth. We have conducted an extensive experimental study to define clearly the optimal environmental conditions for MRC-5 cell attachment onto microcarriers. These inoculation conditions are particularly important when the serial propagation of mammalian cells on microcarriers is considered as in a human vaccine production process. The conditions which were investigated are: initial serum content (% v/v), initial pH, inoculation level (cells/bead), agitation rate (rpm), and the concentration of microcarriers (g/L). The initial distribution of attached cells was found to have a significant affect on the overall efficiency of anchorage-dependent cell cultures, and was used to evaluate attachment efficiency. Based on the experimental results, we propose an optimized protocol for the inoculation of microcarrier cultures.  相似文献   

13.
Only a decade after Van Wezel introduced the first product made in microcarrier cultures on industrial scale at economically acceptable costs, namely Inactivated Polio Vaccine (IPV), interest was taken in this revolutionary type of cell growth system. The basic idea was to develop a culture system with equal potentials for control of environmental culture conditions and scaling up as the systems used in industrial microbiology. Although initially only positively-charged beads were used it soon became clear that negatively-charged or amphoteric materials such as proteins or amino acids polymerized to the surface were equally useful. Eventually numerous different types of microcarrier were developed. The second generation of microcarriers consisted of macroporous beads providing increased surface area for cell attachment and growth by external and interior space. Such microcarriers offer great potential for high cell densities and enhanced productivity for certain production systems, especially recombinant CHO-cells. These carriers, which not only provide possibilities for anchorage-dependent cells but also for cells growing suspension, can be used in homogeneous bioreactors as well as in fluidized or fixed-bed systems. Despite considerable in vestments and research on the development and improvement of microcarriers one question is still open: is microcarrier technology still in its infancy or is it full-grown and is the basic idea relized? In this paper a general overview will be given of the present state of microcarrier technology and also of its perspectives.  相似文献   

14.
The attachment kinetics of normal and virus-infected LuMA cells were studied to improve the production of live attenuated varicella viruses in human embryonic lung (LuMA) cells. Normal LuMA cells and LuMA cells infected by varicella virus at various cytopathic effects (CPE) were grown on microcarriers. Ninety-three percent of suspended LuMA cells attached to the solid surface microcarriers within fifteen minutes and cell viability was greater than 95% when the cell suspension was stirred. Low serum levels did not affect the attachment rate of virus-infected cells in the microcarrier culture system. Kinetic studies showed that varicella infected cells had a lower attachment rate than normal LuMA cells. Virus inoculum (= infected cells) at low CPE showed a relatively better attachment rate on cell-laden microcarriers than virus inoculum at a higher CPE. Maximum titers were obtained at 2 days post-infection. Based on cell densities, the use of viral inoculum showing a 40% CPE led to an approximately 2- and 1.2-fold increase in the cell associated and in cell free viruses, respectively, than a virus inoculum with a CPE of 10%.However, the ratio of cell-free to cell-associated virus in a microcarrier culture was very low, approximately0.04–0.06. These studies demonstrate that the virus inoculum resulting in a high CPE yielded a high production of cell-associated and cell-free virus in microcarrier cultures because of the high cellular affinity of the varicella virus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Scale-up of a myoblast culture process   总被引:3,自引:0,他引:3  
The effects of different types of cell carriers, strategies for cell transfer on carriers, and of several fusion inhibitors on the growth kinetics of primary human myoblasts culture were studied in order to develop a bioprocess suitable for the treatment of Duchenne muscular dystrophy based on the transplantation of unfused cells. Our results indicate that myoblast production is larger on Cytodex 1 and 3 than on polypropylene or polyester fabrics and on a commercial porous macrocarrier. Myoblast growth conditions with Cytodex 1 were further investigated to establish the bioprocess operating conditions. It was found that microcarrier density of 3 g DW l(-1), inoculum density of 2x10(5) cells ml(-1), and continuous agitation speed of 30-rpm result in final myoblast production comparable to static cultures. However, for all the culture conditions used, myoblasts growth kinetics exhibited a lag phase that lasted a minimum of 1 week prior to growth, the end of the lag phase correlating with the appearance of microcarrier aggregates. Based on this observation, we propose that aggregation promotes cell growth by offering a network of very large inter-particular pores that protect cells from mechanical stress. We took advantage of the presence of these aggregates for the scale-up of the culture process. Indeed, using myoblast-loaded microcarrier-aggregates instead of myoblast suspension to inoculate a fresh suspension of microcarriers significantly reduced the duration of the lag phase and allowed the scale-up of the bioprocess at the 500-ml scale. In order to ensure the production of unfused myoblasts, the efficiency of five different fusion inhibitors was investigated. Only calpeptin (9.1 microg ml(-1)) significantly inhibited the fusion of the myoblasts, while TGFbeta (50 ng ml(-1)) and LPA (10 microg ml(-1)) increased myoblasts growth but did not affect fusion, sphingosine (30 microg ml(-1)) induced a 50% death and NMMA (25 microg ml(-1)) had no effect on either growth or fusion. Finally, transplantation trials on severe combined immunodeficient mice showed that microcarrier-cultured human myoblasts grown using the optimized bioprocess resulted in grafts as successful as myoblasts grown in static cultures. The bioprocess, therefore, prove to be suitable for the large-scale production of myoblasts required for muscular dystrophy treatment.  相似文献   

16.
Many potential applications of primary hepatocytes cultured on microcarriers, such as an artificial liver or hepatocyte transplantation, would benefit from having a large number of hepatocytes attached to each microcarrier. In addition, the supply of primary hepatocytes is usually limited, so the efficient utilization of hepatocytes during attachment to microcarriers is necessary. Several physical parameters involved in the attachment process have been investigated, and the number of cells attached per microcarrier and the fraction of hepatocytes which attach have been quantitatively monitored. Variation of the partial pressure of gas phase oxygen in the incubation flask produced significant effects on the attachment of hepatocytes to microcarriers, with higher partial pressures of oxygen found to be necessary for attachment. In addition, variation of fluid depth and cell number, both of which influence the partial pressure of oxygen at the cell surface, affected hepatocyte attachment. The partial pressure of oxygen at the cell surface as a function of the physical parameters was analyzed using a simple one-dimensional theoretical model. Variations in the cell-to-microcarrier ratio used for incubation indicate that a compromise must be made in terms of maximizing the number of cells per microcarrier and the fraction of total hepatocytes which attach. The maximum number of hepatocytes per microcarrier obtained in this work was approximately 100. The best attachment fraction, defined as the ratio of the number of hepatocytes attached to the total number added to the incubation, was approximately 90%. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
An effect of intermittent agitation on cell attachment is studied. The result of cell attachment to a microcarrier was best in the case of continuous agitation. All cells attached to microcarriers under the condition of continuous agitation for 60?min. The rate of attachment was also the highest. The positive effect on cell attachment by agitation is due to the wake around the microcarrier and some changes of structure of cell membrane.  相似文献   

18.
The behavior of lag and exponential growth phase L5178Y mouse leukemic cells under normal and prolonged lag phase conditions with respect to partition in aqueous dextran — polyethylene glycol polymer systems has been studied. ‘Backculture’ of early stationary cells into fresh growth medium is accompanied by a decrease in partition ratio from 0.52 to 0.11. The partition ratio remains depressed for a time considerably longer than the duration of lag phase but rises rapidly and returns to its former value as the cells reach late exponential/early stationary phase. If lag phase is prolonged, the time for which the partition ratio remains depressed is also prolonged. In the exponential phase following a prolonged lag phase, the partition ratio rises at a rate slower than during a normal exponential phase and does not reach the same magnitude for the same position in the cycle. Net negative surface charge as measured by particle microelectrophoresis does not change appreciably throughout the growth cycle. The results suggest that the sequence of events at the cell surface on a populational basis which contribute to the partitioning behavior is possibly predetermined or programmed at the time of transfer into fresh medium. The results further substantiate the technique of aqueous polymer partitioning as being the most sensitive method available for monitoring subtle changes in plasma membrane properties during the cell growth cycle.  相似文献   

19.
For the purpose of establishing a large scale production process of biologically active substances by cultivation of anchorage-dependent mammalian cells, basic studies were carried out on the following items; establishment of a new cell line and derivation of high productivity; construction of optimal serum-free medium; optimization of cultivation method using microcarrier in serum-free medium; and establishment of purification process. The cell line, TRC-29SF, used in this study was newly established from human renal carcinoma with a function of producing macrophage colony-stimulating factor constitutively. Improvement of M-CSF productivity upon TRC-29SF cell line was performed by M-CSF gene amplification with dhfr-MTX system and by truncation of membrane-binding amino acid sequence by recombinant DNA technique. Two kinds of serum-free media, IPEG-85 and IREG-89, were formulated for the growth of TRC-29SF cell and its transformant, respectively. A new cell-adhesion method which permits homogeneous attachment to microcarrier in short term was developed by equalising the sedimentation velocity between cells and microcarrier by addition of 7% Ficoll into the medium. High cell density perfusion culture of TRC-29SF cells was achieved by microcarrier method using IPEG-85 medium, and final cell density reached over 107 cells/ml. Based on the results obtained, long-term perfusion cultures were performed using Mn10-5 and Mn10-5/R600 cell lines, which were created by M-CSF gene transfection and amplification. We found that the productivity of M-CSF per cell began to decrease from the end of logarithmic growth phase. Long-term cultivation with high productivity was accomplished by perfusing medium containing 2 mM sodium butyrate. Purification process for M1-CSF from the culture supernatant of transformed cell line was also established.  相似文献   

20.
Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号