首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infra-red gas analysis and a quantitative radiocarbon tracertechnique were used to measure photosynthesis, and the export,distribution and utilization of current assimilate in the regrowthof leaf tissue and the growth of stem and root of partially-defoliateduniculm barley plants. After defoliation, which removed allleaf tissue above the ligule of leaf 3, the rate of photosynthesisof the remaining two older leaves fell to 90–95 per centof that of control leaves, but they exported more of their assimilatedcarbon to meristems elsewhere in the plant during the first48 h after the defoliation. The level of export from the twoolder leaves began to decline when new leaf tissue regrew fromthe shoot apex, and fell below that of the control leaves 4days after defoliation. The two older leaves supplied the assimilateused in the regrowth of new leaf tissue immediately after defoliation:previously they had exported most of their assimilate to root.There was no evidence that ‘reserves’ were mobilizedto meet the needs of regrowth at leaf meristems or, indeed,of the growth in stem and root; current photosynthesis suppliedsufficient assimilate to account for all observed growth. Ingeneral, the plants responded to defoliation with a rapid andmarked re-allocation of assimilate from root to leaf meristems,with the result that root growth was severely retarded but newleaf tissue grew at 70–100 per cent of the rate observedin control plants.  相似文献   

2.
DELAP  ANNE V. 《Annals of botany》1964,28(4):591-605
Rooted one-year shoots were grown for one season by sprayingtheir roots with nutrient solution. Iron supplied as Fe-EDTAat four concentrations resulted in plants which were respectively(a) severely chlorotic, (b) mildly chlorotic, (c) dark greenand healthy (controls), and (d) dark green but with slight reductionin growth. Severely deficient plants showed 40–70 per cent reductionsin growth as measured by fresh weight, shoot length, diameterincrease, leaf area, net assimilation and relative growth-rates.Dry weights were reduced 70–80 per cent and of the totaldry-weight increment a greater proportion remained in the leaves,which had a lower dry weight and higher water content per unitarea. However, because the initial old stem formed a greaterproportion of the total dry weight, the leaf area ratio remainedabout 11 per cent lower than in the controls. Severely deficientplants had, per unit of chlorophyll, a higher dry-weight increaseand net assimilation rate than the controls. Mild deficiency caused 10–20 per cent reductions in growthand net assimilation rate; the leaf area ratio was normal. Possible mechanisms of the effects of low iron supply are discussed,while the small growth reduction at the highest Fe-EDTA concentrationis attributed to chelate toxicity  相似文献   

3.
用遮阳网设置不同透光率(自然全光照的1%、3%、8%、12%和22%)处理,对不同光照条件下三七〔Panax notoginseng(Burk.)F.H.Chen〕幼苗形态指标(株高、冠幅、块根长、主根长、块根直径、茎基径、单株须根数和单株须根长)、干物质积累(不同器官干质量)和分配以及叶片性状(单株叶面积、比叶面积和叶绿素相对含量SPAD值)的变化进行了研究。结果表明:在透光率不同的条件下三七幼苗的形态指标、不同器官干质量及分配以及叶片性状均有明显变化。其中,块根直径、单株须根长、单株须根数、不同器官(块根、须根、根、叶片和茎)干质量和植株总干质量均随透光率增大逐渐提高;株高在透光率22%条件下最高;冠幅和单株叶面积在透光率3%条件下最大;主根长、茎基径、根冠比、根质比及SPAD值均在透光率8%条件下最高;茎质比和叶质比在透光率3%和1%条件下较大;比叶面积随透光率增大逐渐降低。综合分析结果揭示:三七是一种典型的喜阴植物,种植过程中适当遮阳有利于其生长和干物质积累,其中透光率8%对三七幼苗生长较为适宜。  相似文献   

4.
Carbon dioxide enrichment to 600 ppm increased the amount ofdry matter produced by Callistephus chinensis plants in growthcabinets with negligible mutual shading over a period of 18weeks. Further enrichment to 900 ppm showed smaller and morevariable increases. These effects were the result of a higherunit leaf rate of the treated plants. The direct effect on unitleaf rate was partly offset by a reduction in leaf-area ratio,and this was due almost entirely to the effect on specific leafarea with hardly any effect on leaf-weight ratio. Carbon dioxideaccelerated flower development by about a week at 600 ppm andsomewhat less at 900 ppm. The proportion of the total plantweight in the form of flowers showed a similar trend with timein all treatments and the relationship between flower-weightratio and dry-matter content of flowers was likewise similarfor all treatments, with the highest dry-matter contents ofabout 19 per cent associated with the highest flower-weightratios of about 0.44 for mature flowers. Carbon dioxide enrichmentsignificantly increased the dry-matter content of leaves. Theefficiency of energy conversion based on incident light anda twenty-four-hour cycle of 8 h light and 16 h dark for smallplants of 140–300 mg total dry weight (leaf areas of 50–120cm2) was about 4.7 per cent for the 325 ppm treatment, 6.3 percent for 600 ppm, and 5.5 per cent for 900 ppm. By referenceto some further experiments on the growth of C. chinensis cultivarJohannistag in glasshouse conditions, considerable adaptiveresponse to high and low light intensity was also demonstrated.  相似文献   

5.
Sugar beet grown in solution culture, with or without a supplementof 16 millequivalents per litre of sodium, were subjected towater stress with polyethylene glycol solutions of –0.4,–3, and –8 bar osmotic potential. With the –0.4bar solution leaf water potential was between –6 and –8bar and leaf relative water content about 90 per cent. Decreasingthe solution osmotic potential to –8 bar decreased leafwater potential to about –15 bar and relative water contentto 75 per cent; leaves stopped expanding and transpiration andcarbon dioxide uptake were decreased by 80 and 50 per cent respectively.Net assimilation rates were only slightly decreased becauseleaf growth was decreased more than carbon dioxide assimilation.Relative growth rates of the plants were decreased by 8 percent at –3 bar and by 15 per cent at –8 bar. Sodium absorbed by the plant accumulated mainly in the leavesand petioles; it increased the water content of the leaves andstorage root and the plant fresh weight. Sodium decreased theleaf osmotic potential, slightly increased leaf water potential,and significantly increased turgor. It had no effect on carbondioxide uptake, transpiration, net assimilation rate, or relativegrowth rate. Sodium increased the rate at which the leaf areagrew and it is concluded that it did so by altering the leafwater balance.  相似文献   

6.
苗期遮光光质对生姜光合及生长的影响   总被引:5,自引:0,他引:5  
以不同颜色塑料薄膜为遮光材料,研究了苗期遮光光质对生姜生长及光合作用的影响.结果表明:幼苗覆膜期,生姜叶片叶绿素含量以蓝膜及绿膜处理较高,白膜次之,红膜较低;叶片Pn则以绿膜处理较高,为14.9 μmol·m-2·s-1(第4叶),分别较白膜、红膜及蓝膜提高5.7%、10.4%和18.3%.旺盛生长期撤膜后,Pn较幼苗期升高,但处理间的变化趋势与幼苗期相似;新生叶片叶绿素含量除红膜处理较低外,其它处理无显著差异,但下位叶片叶绿素含量则以蓝膜和红膜处理显著低于绿膜和白膜处理.蓝膜处理生姜植株茎秆增高、变细,分枝数较少;绿膜处理植株根、茎、叶及根茎鲜质量较高,白膜、红膜及蓝膜处理依次降低,收获时,其产量分别达57 000、53 709、51 487和48 712 kg·hm-2.说明生姜苗期采用绿膜遮光,可增强叶片光合作用,促进植株生长,提高生姜产量.  相似文献   

7.
以自然光照为对照,对轻度、中度和重度遮光条件下(遮光率分别为24%、48%和72%)川西柳叶菜( Epilobium fangii C. J. Chen et al.)的部分形态、生长和生理指标进行比较分析。分析结果显示:遮光处理对川西柳叶菜的MDA含量无显著影响,对叶长、花冠宽、叶干质量分配比例以及叶绿素a( Chla)、叶绿素b( Chlb)和类胡萝卜素(Car)含量及Chla/Chlb值有显著影响(P<0.05),对其余指标有极显著影响(P<0.01)。与对照相比,3个遮光处理组的单株根数、株高、主茎长和基径总体上显著下降,根长在轻度和中度遮光条件下略升高、在重度遮光条件下显著升高;3个遮光处理组的单株叶片数和叶长总体上显著下降,叶宽在轻度和中度遮光条件下略下降、在重度遮光条件下显著升高,叶厚在轻度遮光条件下显著升高、在中度遮光条件下略下降、在重度遮光条件下显著下降;3个遮光处理组的花柄长、花管长和花冠高显著升高,单株开花数在轻度遮光条件下略下降、在中度遮光条件下显著升高、在重度遮光条件下显著下降,花冠宽在轻度和中度遮光条件下略升高、在重度遮光条件下显著升高。与对照相比,3个遮光处理组的全株干质量和茎干质量分配比例均显著下降;根干质量分配比例和根冠比在轻度遮光条件下显著升高、在中度和重度遮光条件下略下降;地上部干质量分配比例在轻度遮光条件下显著下降、在中度和重度遮光条件下略升高;叶干质量分配比例在轻度和中度遮光条件下略下降、在重度遮光条件下略升高。在轻度和中度遮光条件下,叶片的Chla、Chlb和Car含量基本上显著高于对照,Chla/Chlb值分别略低于或显著低于对照;而在重度遮光条件下这4个指标均略高于对照。与对照相比,轻度和中度遮光条件下叶片的H2 O2含量和SOD活性略升高,MDA含量和总抗氧化能力略下降;总酚含量在轻度遮光条件下略下降、在中度遮光条件下略升高;重度遮光条件下这5个指标均显著升高。随着遮光程度的增强,川西柳叶菜的单株根数、株高、主茎长、基径和叶厚逐渐下降,而叶宽、全株干质量、叶干质量分配比例、H2 O2含量、SOD活性和总酚含量逐渐升高;其中,在中度遮光条件下,其单株开花数、花柄长、花管长、花冠高、花冠宽和花干质量分配比例最高。结果表明:在遮光条件下,川西柳叶菜可在形态、生长和生理上调整生长策略,完成发育过程;并且,中度遮光有利于其生殖分配,提高其观赏价值。  相似文献   

8.
Field-grown potatoes were subjected to N deficiency (no appliedN) or received high levels of N (240 kg N ha–1) at planting.The effects of these treatments were monitored at five stagesduring growth in terms of the allocation of photosynthate withinthe leaf, and the export and partitioning of carbon to differentsinks. N deficiency significantly raised the starch concentrationin all organs of the plants, particularly in leaves and stems,and as a consequence the total amount of starch in the canopyof the low N plants remained greater than that of the high Nplants until approx. 100 days after planting (DAP). The totalamounts of carbohydrates, protein and amino acids were calculatedfor each treatment and these values were used to derive a balancesheet for major reserves. Net losses of reserves occurred fromthe canopy in both treatments in the period 97–133 DAP,although these were shown to represent < 3 per cent of thetotal gain in tuber dry weight for the season. Partitioning of 14C assimilates was examined in whole plantsand also in single leaves. Reduced partitioning to the tubers,seen in high N plants throughout their growth, was shown tobe due to decreased percentage export by the leaf and accumulationof exported 14C by the stems. Partitioning to the tubers inlow N plants increased prior to senescence when 87 per centof the fixed 14C was exported within 24 h, 80 per cent of thisto the tubers. The equivalent values for the high N plants were77 and 60 per cent respectively. Increased percentage exportcoincided with decreased allocation to starch in the leaf, anda link between these processes is suggested. N also significantlyaltered the allocation of 14C within the leaf and may have influencedthe degradation of starch in the dark to a greater degree thanits synthesis in the light. The enzymes sucrose phosphate synthase (SPS), and starch synthasewere measured concurrently with partitioning. High N plantsshowed higher rates of activities of each of the enzymes althoughboth enzymes showed a similar pattern of development over theseason, irrespective of N treatment. The data are discussed in the light of conflicting reports concerningthe influence of N on translocation and partitioning. 14C assimilates, carbohydrates, nitrogen, potato (Solanum tuberosum L.), protein  相似文献   

9.
To determine on a quantitative and mathematical basis the effectsof seasonal changes in the levels of daylight and temperatureon vegetative growth and development in two years pot experimentsin the open were carried out at successive weekly intervalsbetween May and September. So as to minimize errors arisingfrom ontogenetic drifts the procedure adopted was to sow atintervals of a few days throughout the season batches of potswith seed of Helianthus annuus and to select pots containingplants of a standard morphological status for the start of eachweekly experiment. At the beginning and end of the week halfthe pots were harvested, the plants divided into root, stem,and leaf, the leaf area estimated, and the dry weights determined.The diurnal changes in air temperature were continuously recordedwhile the amount of daylight, excluding infra-red and ultravioletradiation, was measured with a specially constructed integratingrecorder. From the biological data for each week twelve variables werecalculated, namely the relative growth rates of both the wholeplant and the individual parts, the proportion by dry weightof the individual parts (root-, stem-, and leaf-weight ratios),the ratio of leaf area to total plant weight (leaf-area ratio),the rate of leaf expansion, the ratio of leaf area to leaf weight,and the net assimilation rate on the criteria of leaf area andweight. The main independent variables considered were the meanweekly temperature, the mean daily maximum minus the mean nightlyminimum temperature, the total amount of light per week, andthe time of year when the individual experiment was undertaken. Multiple regression analyses showed that (i) save for the stem-weightratio the data for the two years could be pooled, (ii) the fluctuationin diurnal temperature was of little account, (iii) transformationof the light data to either logarithms or square roots did notimprove the fit and (iv) for some of the dependent variables,e.g. leaf-area ratio, the ‘time of year’ effectwas significant but could be eliminated if the equation wasmodified to predict the value at the end of the week, giventhe initial value and the light and temperature data. The final series of multiple regressions revealed that (i) theleaf-weight ratio is not controlled by either the amount oflight or mean temperature, (ii) the relative growth rate ofthe root and the root-weight ratio are positively linked onlywith temperature, (iii) the rate of leaf growth either in areaor weight together with the net assimilation rate (area basis)are positively dependent on light alone, (iv) the net assimilationrate (weight basis) and the relative growth rates of the wholeplant and the stem are directly and positively correlated withboth temperature and light, and (v) the leaf-area ratio, theratio of leaf area to leaf weight and the stem-weight ratioare depressed by increasing light but augmented by rising temperature.In the individual regressions for net assimilation rate (areaand weight), the relative growth rates of the whole plant, stemand leaf weight, and the ratios of stem weight and leaf areato leaf weight the percentage variation accounted for rangedfrom 47 to as high as 91 per cent. The implication of these findings in relation to experimentsin controlled environmental chambers are discussed.  相似文献   

10.
WOLEDGE  JANE 《Annals of botany》1972,36(3):551-561
The rate at which the net photosynthesis of grass leaves grownin bright light (119 W m–2) decreased as they aged wasincreased by severe shading (to 21 W m–2 or less). However,less severe shading (light intensities of 36 W m–2 ormore) had no effect. The decrease in photosynthesis was unaffectedby whether the whole plant was shaded or only the leaf whosephotosynthesis was measured. In both shaded and unshaded leaves, photosynthesis measuredin bright light fell faster as the leaf aged than did photosynthesisin dim light. Both mesophyll and stomatal diffusion resistancesrose as the leaf aged but the former rose faster. The chlorophyllcontent fell only towards the end of the life of the leaves.  相似文献   

11.
Young tomato plants were grown from germination in water cultureat light-flux densities from 6 to 110 W m-2 (400–700 nm),daylengths from 8 to 24 h and CO2 concentrations from 0.4 to2.2 g CO2 m-3 in controlled environment cabinets. The growth rates and net assimilation rates of 14–17-day-oldplants at the highest light integrals were appreciably greaterthan most values previously recorded for tomato, and diminishedwith time. Plants in the lowest light conditions had leaf arearatios five times larger than those in the highest light, attributablemainly to a difference in leaf dry weight/area. Such flexibilityin leaf area ratio has not previously been associated with ‘sun’plants such as the tomato. Relatively normal growth was obtained in continuous light, incontrast to most other reports. This may have been due to theuse of conditions which would minimise water stress. The efficiency of the conversion of incident light energy tochemical energy by the whole plant ranged from 15 per cent inseedlings in low continuous light to about 6 per cent, tendingto be higher in young plants in long days under CO2 enrichment.The higher values are probably overestimates because of theexclusion of reflected light from the energy receipt values.  相似文献   

12.
Effects of Nitrogen Fertilizer on Growth and Yield of Spring Wheat   总被引:1,自引:0,他引:1  
Nine amounts of nitrogen fertilizer, ranging from 0 to 200 kgN ha–1, were applied to spring wheat cv. Kleiber in the3 years 1972-1974. In 1972 grain dry weight with 125 kg N ha–1or more was 100 g m–2 (23 per cent) greater than withoutnitrogen. Grain yield was unaffected by nitrogen in the otheryears. Leaf area at and after anthesis was increased throughoutthe range of nitrogen tested, most in 1972 and least in 1973.Consequently, the addition of 200 kg N ha–1 decreasedthe amount of grain produced per unit of leaf area by approximately25 per cent in all years. The dry weight of leaves and stems at anthesis and maturitywas increased by nitrogen in all years, similarly to leaf area.However, the change in stem dry weight between anthesis andmaturity was not affected by nitrogen; stems increased in dryweight for about 20 days after anthesis and then decreased tovalues similar to those at anthesis. The uptake of CO2 per unit area of flag leaf or second leaf(leaf below the flag leaf) was slightly decreased by nitrogenwhen the increase in leaf area caused by nitrogen appreciablydecreased the light intensity at the surface of these leaves.In spite of such decreases the CO2 absorbed by flag and secondleaves per unit area of land was always increased by nitrogen,and relatively more than was grain yield. It is suggested that increases in respiratory loss of CO2 withincreasing nitrogen fertilizer may explain why nitrogen increasedvegetative growth and leaf area relatively more than grain yield.  相似文献   

13.
At weekly intervals from May to September over 2 years the growthof separate batches of Zea mays (Swiss hybrid Orla 266) wasrecorded for individual plants in pot experiments, togetherwith the corresponding weekly means of solar radiation and themean, maximum, and minimum diurnal air temperatures. To reducesampling errors the plants were ranked on the bases of initialgrain size and leaf number. To minimize differences in stageof development at the end of 21 days from sowing the size wasadjusted in 1965 by switching the pots in and out of a glasshouse:in 1966 the plants were kept for the first 11 days in a controlledenvironment and then hardened off in the open. Between 21 and28 days when the second sample was taken half the plants weresubjected to light shade (0.65–0.70 daylight). Multiple regression analysis showed that the relative growthrate of the whole plant (RGR), the rate of increase in leafarea (RLGR), and the net assimilation rate (NAR) were positivelydependent on both radiation and mean air temperature. In 1965there were negative effects of minimum temperature on RGR andNAR and a positive response of RLGR to leaf number. In 1966an increase in leaf number led to a higher RGR and LAR but depressedRLGR, while minimal temperature had no significant effects.In all these regressions the variation accounted for was high,ranging from 80 to 89 per cent. At the second sampling occasion the leaf-area ratio (LARf) wasinversely related to radiation, negatively dependent on daytemperature, but positively linked with night temperature. Theorder of the initial LAR exerted no influence. The RGRs of theshoot and the root were positively associated with both radiationand mean temperature. In 1965 there were small negative responsesof the shoot to both minimum temperature and leaf number andfor the root only leaf number. The variation accounted for wasleast for LARf (59–62 per cent) and intermediate for RGRaand RGRr (77–89 per cent). For RGR, NAR, and RLGR the calculated partial regression coefficientsfor mean temperature in 1965 were larger than those for radiationbut in 1966, apart from RLGR, they were equalled by radiation.The discrepancies between years can be ascribed to a highercorrelation coefficient between radiation and temperature in1965 (0.53) as against 1966 (0.33). The value of multiple regression analysis in the evaluationof the environment by carefully designed field experiments isemphasized in relation to other investigations of light andtemperature undertaken under controlled conditions.  相似文献   

14.
Sorghum plants were grown in the laboratory with the root systemof each plant split between two pots. Three split pot treatmentswere established: (– –) treatment, where both halvesof the root were free from Striga; (– +) treatment, wherethe soil in one half of the pot had been inoculated with Strigaseed; (+ +) treatment, where the soil in both halves of thepot had been inoculated with Striga. Seed, stem and leaf weight were reduced by 82, 60 and 26 percent respectively in (+ +) plants compared to (– –)plants. Partially infected plants (– +) behaved similarlyto (+ +) plants. Rates of light saturating carbon dioxide fixation in (+ +) and(– +) plants were only 60 per cent of those measured in(– –) plants. This reduction was independent ofchanges in stomatal conductance. The effects of Striga on the growth and photosynthesis of sorghumappear to be independent of the degree of parasitism to whichthe host is subjected. The difference in production betweeninfected and uninfected plants was greater than could be accountedfor in term of competition with the parasite for resources,and Striga appears to have a pathological effect on the host. Sorghum, Striga, parasitic angiosperm, growth, photosynthesis  相似文献   

15.
不同光照对望天树种子萌发和幼苗早期生长的影响   总被引:14,自引:2,他引:14  
在不同光照梯度的人工遮荫和森林生境中,研究了西双版纳季节雨林标志树种望天树的种子萌发和幼苗早期生长特征.结果表明,裸地上的强光照和深度遮荫均不利于望天树种子的萌发,中等程度的遮荫有利于种子萌发.望天树种子萌发率在林窗中央最大,而且萌发迅速,林窗边缘和林下生境不利于种子萌发.幼苗株高、基径和单株叶面积等生长指标均在部分遮荫处理条件下最大;幼苗根冠比在裸地上最高,且随遮荫程度的增加而降低;幼苗比叶面积在一定光照强度范围内随遮荫程度的增加而增大,在3层遮荫最大.除幼苗根冠比以外的其它生长参数均在林窗中央最大.讨论了环境因子(主要是光照强度和光质)对望天树种子萌发和幼苗生长的影响.  相似文献   

16.
光照和氮磷供应比对木荷生长及化学计量特征的影响   总被引:1,自引:0,他引:1  
熊静  虞木奎  成向荣  汪成  邹汉鲁 《生态学报》2021,41(6):2140-2150
光照和养分限制是影响林下植物生长和更新的关键影响因素,以亚热带主要常绿树种木荷(Schima superba)实生幼苗为试验对象,研究了不同光照(全光照、遮阴即45%全光照)和N、P供应比例(5,15,45)对幼苗生长和化学计量特征的影响。结果表明:(1)遮阴不仅严重抑制了木荷各器官和单株生物量积累,更加剧了P限制。尽管N、P添加对木荷生长没有显著促进作用,但N、P供应比例为5时的性状组合更有利于木荷后期生长,但高N、P供应比例可能导致P限制。(2)遮阴下叶N、P含量显著增加,但叶C/N和C/P比显著降低;不同光照处理组中各器官及总N含量均随N、P供应比例增大而显著增加,而C/N比逐渐降低;P的分配格局发生改变,全光照组各器官P含量为茎 > 叶 > 根,遮阴组各器官P含量为根 > 茎 > 叶。(3)随N、P供应比例增加或光照强度降低,木荷均趋向降低根冠比和根质比、增加叶质比或茎质比。(4)木荷生物量与各器官N、P含量、叶质比呈极显著负相关,而与C/N和C/P比及根冠比、茎质比、根质比呈极显著正相关。光强和N、P比例变化均显著影响了木荷幼苗的养分利用特征,因而木荷作为伴生树种优化林分环境对其早期生长具有重要意义。  相似文献   

17.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

18.
EAGLES  C. F. 《Annals of botany》1973,37(2):253-262
The growth of two natural populations of cocksfoot from contrastingclimatic regions, Norway and Portugal, was studied in two photoperiodsat three temperatures with three levels of light energy (48,144, and 240 W m–2 in the wavelength interval 400–700nm). There was a consistent increase in relative growth-rate(RGR) in response to increased light energy up to 144 W m–2,but above this energy level there was either no change, or,in some treatments, a decline. Net assimilation rate (NAR) increased,whilst leaf area ratio decreased from the lowest to the highestenergy level in most treatments. The decrease of LAR with increasedlight energy could be attributed to a decrease of both leafweight ratio (LWR) and specific leaf area (SLA), a greater proportionof dry matter being distributed to plant parts other than leaf.This effect occurred although there was a positive relationshipbetween light energy and relative leaf growth-rate (RLGR). Populationdifferences in these growth attributes were most marked in thetreatments with low-temperature and short-day conditions. Theefficiency of energy conversion of visible radiation declinedfrom 3–4 per cent at the lowest energy level to 1–2per cent at the highest energy level.  相似文献   

19.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

20.
It has been confirmed that shading leaves from day 5 onwardslowers the rate of CO2 fixation when they are placed in saturatingirradiances. The reduction due to shade treatment is about 46per cent and a similar reduction in maximum chlorophyll contentof the leaf follows shading. Maximum amounts of total solubleprotein and of Fraction I protein are less in shaded leavesthan in control leaves and prolonged treatment leads to a declinein leaf protein content. The relative amounts of different proteinare also affected by treatment; in control leaves Fraction Iprotein accounts for about 45 per cent of the total but in shadedleaves the value is about 30 per cent. Increases and decreasesin leaf protein amount, with concomitant changes in the ratioof Fraction I to total protein can be brought about by removingshades and re-applying them. Such changes can be induced evenin fully expanded leaves in which net protein synthesis is notusually found. Maximal amounts of leaf protein are found in irradiances of60 W m–2 or more, with lower values at lower light intensities.Where the first leaf is held in a stream of CO2-free air a lowerlevel of protein is found. This, and the ratio of Fraction Ito total protein, are similar to values for shaded leaves, andsuggest the involvement of photosynthetic carbon fixation indetermining leaf protein amount. A 1:1 linear correlation between amount of Fraction I proteinand RuDP carboxylase activity is shown but the rate of CO2 incorporationby leaf extracts is 2–3 times greater than that of theintact leaf. The significance of this and the effect of irradianceon leaf protein amount are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号