首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Hemolysin from Staphylococcus aureus assembles from a water-soluble, monomeric species to a membrane-bound heptamer on the surface of target cells, creating water-filled channels that lead to cell death and lysis. Staphylococcus aureus also produces the gamma-hemolysin and leukocidin toxins, which function as two component toxins in the disruption and lysis of erythrocytes and leukocytes. Analysis of the aligned sequences of alpha-hemolysin, gamma-hemolysin, and leukocidin in the context of the alpha-hemolysin heptamer structure supports the conclusion that even though the level of sequence identity between alpha-hemolysin and the gamma-hemolysin and leukocidin toxins is in the so-called twilight zone, the three-dimensional structures of the protomers are probably conserved. By analogy with alpha-hemolysin, gamma-hemolysin and leukocidin may also form oligomeric, transmembrane channels in which an antiparallel beta-barrel constitutes the primary membrane-embedded domain.  相似文献   

2.
Staphylococcus aureus strain Smith 5R produces a two-component pore-forming toxin and forms a rough-surfaced colony with hemolytic haloes on human red blood cell plates (R[+]). Serial subcultures of the strain in broth caused the appearance of gamma-hemolysin negative variants with a smooth colony shape (S[-]), and the S[-] valiant became predominant in culture. The R[+] strain, in which agrA is naturally disrupted by an insertion of IS1181, produced high levels of gamma-hemolysin. In the S[-] variant, expression of both hlg and lukS-F mRNAs was strongly reduced. Nucleotide sequencing of the sae locus revealed that all isolated S[-] variants had spontaneous mutations in the sae locus. Recovery of gamma-hemolysin productivity in S[-] by transformation of the wild-type sae allele strongly suggested that the expression of gamma-hemolysin is positively regulated by sae in an agr-independent manner.  相似文献   

3.
4.
Staphylococcal gamma-hemolysin (Hlg), leukocidin (Luk), and Panton-Valentine leukocidin (PVL) are two-component and hetero-oligomeric pore-forming cytolytic toxins (or cytolysin), that were first identified in bacteria. No information on the existence of hetero-oligomeric pore-forming cytolytic toxins in bacteria except for staphylococcal strains is available so far. Hlg (Hlg1 of 34 kDa/Hlg2 of 32 kDa) effectively lyses erythrocytes from human and other mammalian species. Luk (LukF of 34 kDa/LukS of 33 kDa) is cytolytic toward human and rabbit polymorphonuclear leukocytes and rabbit erythrocytes, and PVL (LukF-PV of 34 kDa/LukS-PV of 33 kDa) reveals cytolytic activity with a high cell specificity to leukocytes. Hlg1 is identical to LukF and that the cell specificities of the cytolysins are determined by Hlg2 and LukS. Based on the primary and 3-dimensional structures of the toxin components, Hlg, Luk, and PVL are thought to form a family of proteins. In the first chapter of this article, we describe the molecular basis of the membrane pore-forming nature of Hlg, Luk, and PVL. We also describe a requirement of the phosphorylation of LukS and LukS-PV by protein kinase for their leukocytolytic activity besides their pore formation on human leukocytes.Recently, the assembly mechanism of the LukF and Hlg2 monomers into pore-forming hetero-oligomers of Hlg on human erythrocyte membranes has been clarified for the first time by our study using a single-molecular fluorescence imaging technique. We estimated 11 sequential equilibrium constants for the assembly pathway which includes the beginning with membrane binding of monomers, proceeds through single pore oligomerization, and culminates in the formation of clusters of the pores. In the second chapter of this article, we refer to an assembly mechanism of LukF and Hlg2 on human erythrocytes as well as the roles of the membranes of the target cells in pore formation by Hlg.The LukF, LukS, and Hlg2 proteins are derived from the Hlg locus (hlg), and have been found in 99% of clinical isolates of Staphylococcus aureus. In contrast, LukF-PV and LukS-PV are derived from the PVL locus (pvl) which is distinct from the hlg locus, and only a small percentage of clinically isolated S. aureus strains carries pvl. Recently, we discovered pvl on the genome of lysogenic bacteriophages, psiPVL, and determined the entire gene of the phage. We also demonstrated the phage conversion of S. aureus leading to the production of PVL through the discovery of a PVL-carrying temperate phage, psiSLT, from a clinical isolate of S. aureus. In the third chapter of this article, we discuss genetic analyses of the Hlg, Luk, and PVL genes. We also discuss the current status of knowledge of the genetic organization of PVL-converting phages in order to achieve an understanding of their molecular evolution.  相似文献   

5.
Narita S  Kaneko J  Chiba J  Piémont Y  Jarraud S  Etienne J  Kamio Y 《Gene》2001,268(1-2):195-206
Staphylococcal Panton-Valentine leukocidin (PVL) is an important virulence factor, which causes leukocytolysis and tissue necrosis. Our previous report on the existence of the PVL genes (lukS-PV and lukF-PV) on the genome of prophage phiPVL in the Staphylococcus aureus strain V8 suggested the horizontal transmission of PVL genes by temperate bacteriophage among S. aureus (Kaneko, et al., 1998. Gene 215, 57-67). Here, we demonstrated the phage conversion of S. aureus leading to the production of PVL by discovery of a novel PVL-carrying phage, phiSLT (Staphylococcal Leukocytolytic Toxin) from a clinical isolate of S. aureus. phiSLT was able to lysogenize several clinical isolates of PVL-negative S. aureus strains as well as strain RN4220 at the conserved 29-bp sequence (attB) and all the lysogenized S. aureus strains had the ability to produce PVL. phiSLT had an elongated head of about 100x50 nm and a flexible tail of 400 nm long, that was quite different from phiPVL which had an isometric hexagonal head of about 60 nm diameter. The linear double-stranded phiSLT genome comprised 42,942 bp with 29-bp attachment core sequences and contained 62 open reading frames. Only 6.4 kbp region containing lysis cassette, PVL genes, attP, integrase, and orf204 of phiSLT was identical to that of phiPVL, while other regions were different from those of phiPVL. Thus, it can be concluded that PVL genes are carried by different temperate phages, which have the same attachment site.  相似文献   

6.
目的了解金黄色葡萄球菌儿童分离株携带Panton-Valentine杀白细胞素(PVL)基因的状况及感染类型。方法采用多重PCR同时检测金黄色葡萄球菌16SrRNA基因、PVL基因和mecA基因;多重PCR检测MR—SA的SCCmec基因型及亚型。结果66株金黄色葡萄球菌JL童临床分离株经多重PCR检测,其中MRSA有7株(10.6%),MSSA有59株(89.4%);携带PVL基因金黄色葡萄球菌有31株,总阳性率为47.O%(31/66),其中2株为MRSA,29株为MSSA,阳性率分别为28.6%(2/7)和49。2%(29/59)。2株MRSA都属于SCCmecIV型;31株PVL基因阳性分离株有21株分离自脓液,7株分离自血液,仅1株分离自痰液。结论儿童MSSA是携带PVL基因的主要菌株,携带PVL基因的金黄色葡萄球菌主要引起化脓性感染和血流感染。  相似文献   

7.
Despite epidemiological data linking necrotizing skin infections with the production of Panton-Valentine leukocidin (PVL), the contribution of this toxin to the virulence of S. aureus has been highly discussed as a result of inconclusive results of in vivo studies. However, the majority of these results originate from experiments using mice, an animal species which neutrophils--the major target cells for PVL--are highly insensitive to the action of this leukocidin. In contrast, the rabbit neutrophils have been shown to be as sensitive to PVL action as human cells, making the rabbit a better experimental animal to explore the PVL role. In this study we examined whether PVL contributes to S. aureus pathogenicity by means of a rabbit skin infection model. The rabbits were injected intradermally with 10(8) cfu of either a PVL positive community-associated methicillin-resistant S. aureus isolate, its isogenic PVL knockout or a PVL complemented knockout strain, and the development of skin lesions was observed. While all strains induced skin infection, the wild type strain produced larger lesions and a higher degree of skin necrosis compared to the PVL knockout strain in the first week after the infection. The PVL expression in the rabbits was indirectly confirmed by a raise in the serum titer of anti-LukS-PV antibodies observed only in the rabbits infected with PVL positive strains. These results indicate that the rabbit model is more suitable for studying the role of PVL in staphylococcal diseases than other animal models. Further, they support the epidemiological link between PVL producing S. aureus strains and necrotizing skin infections.  相似文献   

8.
A technique for identifying and characterizing staphylococcal hemolysins by first separating them electrophoretically in barbital-buffered agar gel (pH 8.4) at 5 ma/cm for 2 hr and then determining their hemolytic activities by exposing them to human, horse, rabbit, and sheep erythrocytes is described. The alpha-hemolysin produced by a White variant of the Wood 46 strain of Staphylococcus aureus migrated 18 mm towards the cathode, and it lysed horse, rabbit, and sheep erythrocytes, whereas a Clear variant of the Wood 46 strain of S. aureus produced a lysin which migrated similarly to the alpha-hemolysin but lysed only rabbit cells. This latter lysin was tentatively named alpha(1)-lysin. This strain of S. aureus also produced beta-hemolysin which migrated 36 mm towards the cathode and lysed sheep cells. beta-Hemolysin produced by some strains of S. aureus showed considerable tailing during electrophoresis, whereas beta-hemolysin produced by other strains of S. aureus migrated as a well-defined peak. A lysin migrating 11 mm towards the anode was probably delta-lysin. It was, however, not produced in sufficient concentration when the cultures were grown in semisolid medium.  相似文献   

9.
The amino acid sequence of the thioredoxin isolated from rabbit bone marrow was determined chiefly by high performance tandem mass spectrometry and fast atom bombardment mass spectrometry combined with manual Edman degradation. The sequences of peptides generated by digestion with trypsin alone or in combination with Staphylococcus aureus protease V8 or thermolysin were determined from their collision-induced dissociation mass spectra. Alignment of these sequences and additional sequence information were obtained from the collision-induced dissociation mass spectra of peptides obtained from digestion of the intact protein with S. aureus protease V8 and alpha-chymotrypsin. The resulting sequence of 104 residues is as follows: Val-Lys-Gln-Ile-Glu-Ser-Lys-Ser-Ala-Phe-Gln- Glu-Val-Leu-Asp-Ser-Ala-Gly-Asp-Lys-Leu-Val-Val- Val-Asp-Phe-Ser-Ala-Thr-Trp-Cys-Gly-Pro-Cys-Lys- Met-Ile-Lys-Pro-Phe-Phe-His-Ala-Leu-Ser-Glu-Lys- Phe-Asn-Asn-Val-Val-Phe-Ile-Glu-Val-Asp-Val-Asp- Asp-Cys-Lys-Asp-Ile-Ala-Ala-Glu-Cys-Glu-Val-Lys- Cys-Met-Pro-Thr-Phe-Gln-Phe-Phe-Lys-Lys- Gly-Gln-Lys-Val-Gly-Glu-Phe-Ser-Gly-Ala-Asn-Lys- Glu-Lys-Leu-Glu-Ala-Thr-Ile-Asn-Glu-Leu-Leu.  相似文献   

10.
Complex physalin metabolites present in the capsules of the fruit of Physalis angulata L. have been isolated and submitted to a series of assays of antimicrobial activity against Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, Neisseria gonorrhoeae ATCC 49226, Escherichia coli ATCC 8739; E. coli ATCC 25922, Candida albicans ATCC 10231 applying different methodologies such as: bioautography, dilution broth, dilution agar, and agar diffusion techniques. A mixture of physalins (pool) containing physalins B, D, F, G inhibit S. aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, and N. gonorrhoeae ATCC 49226 at a concentration of 200 mg/microl, using agar dilution assays. The mixture was inactive against P. aeruginosa ATCC27853, E. coli ATCC 8739; E. coli ATCC 25922, C. albicans ATCC 10231 when applying bioautography assays. Physalin B (200 microg/ml) by the agar diffusion assay inhibited S. aureus ATCC 6538P by +/- 85%; and may be considered responsible for the antimicrobial activity.  相似文献   

11.
Methicillin-resistant Staphylococcus aureus isolated in the community (CA-MRSA) have been reported to carry the loci for Panton Valentine leukocidin (PVL) in high frequency. CA-MRSA in Orebro County, Sweden, constitutes at least 50% of MRSA and the PVL locus is detected in as many as 66% of these CA-MRSA isolates. The aim of this study was to characterize PVL-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus by molecular methods, to determine the nucleotide sequence of lukS-PV and lukF-PV in S. aureus isolates of different origins, and to investigate the biological consequence of variations occurring in the genes. The PVL-positive MRSA investigated were composed of six different STs (ST8, 36, 80, 152, 154, and 256). Six additional STs (ST5, 22, 25, 30, 88, and 567) were detected when investigating PVL-positive methicillin-susceptible S. aureus with MLST. Despite the different genetic origins of the isolates analyzed, the PVL genes were well conserved and only one mutation was non-synonymous. Evaluation of the consequence of this mutation showed that the mutated toxin and wild-type toxin had comparable biological activity on human polymorphonuclear cells.  相似文献   

12.
Ma X  Chang W  Zhang C  Zhou X  Yu F 《PloS one》2012,7(4):e34970
Panton-Valentine leukocidin (PVL) is a cytotoxin secreted by Staphylococcus aureus and associated with severe necrotizing infections. PVL targets polymorphonuclear leukocytes, especially neutrophils, which are the first line of defense against infections. Although PVL can induce neutrophil death by necrosis or apoptosis, the specific inflammatory responses of neutrophils to this toxin are unclear. In this study, both in vivo and in vitro studies demonstrated that recombinant PVL has an important cytotoxic role in human neutrophils, leading to apoptosis at low concentrations and necrosis at high concentrations. Recombinant PVL also increased the levels of pro-inflammatory cytokine secretion from neutrophils. The up-regulation of pro-inflammatory cytokines was due to nuclear factor-kappa B (NF-κB) activation induced by PVL. Moreover, blocking NF-κB inhibited the production of inflammatory cytokines. To test the role of neutrophil immune responses during the pathogenesis of PVL-induced acute lung injury, we used immunocompetent or neutropenic rabbits to develop a model of necrotizing pneumonia. Immunocompetent rabbits challenged with PVL demonstrated increased inflammation containing neutrophilic infiltrates. In addition, there were elevated levels of inflammatory cytokines (IL-6, IL-8, TNF-α and IL-10) and NF-κB in the lung homogenate. In contrast, the lung tissues from neutropenic rabbits contained mild or moderate inflammation, and the levels of inflammatory cytokines and NF-κB increased only slightly. Data from the current study support growing evidence that neutrophils play an important role in the pathogenesis of PVL-induced tissue injury and inflammation. PVL can stimulate neutrophils to release pro-inflammatory mediators, thereby causing an acute inflammatory response. The ability of PVL to induce inflammatory cytokine release may be associated with the activation of NF-κB or its pore-forming properties.  相似文献   

13.
《Gene》1998,215(1):57-67
The staphylococcal Panton–Valentine leukocidin (PVL) genes, [lukS-PVlukF-PV], exist on the genome of a temperate bacteriophage φPVL isolated from mitomycin C-induced Staphylococcus aureus V8 (ATCC 49775) (Kaneko, J., Kimura, T., Kawakami, Y., Tomita, T., Kamio, Y., 1997b. Panton–Valentine leukocidin genes in phage-like particle isolated from mitomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Biosci. Biotechnol. Biochem. 61, 1960–1962). In this study, the complete nucleotide sequence of the φPVL genome was analyzed, and the att sites (attL, attR, and attB) required for site-specific integration of φPVL into the host chromosome were also determined. The linear double-stranded φPVL genome comprised 41 401 bp with 3′ staggered cohesive ends (cos) of nine bases and contained 63 ORFs, among which the regulatory proteins involved in DNA replication, structural proteins, a holin, a lysin, an integrase, and dUTPase, were tentatively identified by the comparison of the deduced amino acid sequences and by the analysis of the proteins isolated from φPVL particles. The [lukS-PVlukF-PV], attP, and int (integrase gene) of φPVL were all located very close to one another within a 4.0-kb segment on the genome in the order given, and this segment was located at the center from the left and the right cos sites. In addition, the attP region contained five direct repeat sequences that showed a high degree of homology with the recombinase-binding sites of some other S. aureus bacteriophages. The φPVL genome was found to integrate into an ORF encoding an unknown protein comprising 725 amino acid residues with two leucine zipper-like motifs.  相似文献   

14.
金黄色葡萄球菌isdb基因的克隆表达及其小鼠免疫试验   总被引:1,自引:0,他引:1  
为了研究金黄色葡萄球菌表面Isdb蛋白的免疫原性,应用PCR方法扩增出金黄色葡萄球菌Wood46株的isdb 基因并进行序列分析,再将isdb 基因插入到pET32-a(+) 载体上,构建了pET32-a(+)-isdb重组质粒,将重组质粒转化到宿主菌大肠埃希菌BL21中并诱导表达和纯化Isdb蛋白。用纯化的Isdb蛋白免疫小鼠,检测小鼠血清中抗体水平;在二次免疫之后的第2周,用金黄色葡萄球菌Wood46、HLJ23-1株对小鼠攻毒,每组8只小鼠。研究结果发现:isdb基因在不同菌株中高度保守;Isdb蛋  相似文献   

15.
In 2008, an unusual strain of methicillin-sensitive Staphylococcus aureus (MSSA68111), producing both Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin-1 (TSST-1), was isolated from a fatal case of necrotizing pneumonia. Because PVL/TSST-1 co-production in S. aureus is rare, we characterized the molecular organization of these toxin genes in strain 68111. MSSA68111 carries the PVL genes within a novel temperate prophage we call ФPVLv68111 that is most similar, though not identical, to phage ФPVL--a phage type that is relatively rare worldwide. The TSST-1 gene (tst) in MSSA68111 is carried on a unique staphylococcal pathogenicity island (SaPI) we call SaPI68111. Features of SaPI68111 suggest it likely arose through multiple major recombination events with other known SaPIs. Both ФPVLv68111 and SaPI68111 are fully mobilizable and therefore transmissible to other strains. Taken together, these findings suggest that hypervirulent S. aureus have the potential to emerge worldwide.  相似文献   

16.
17.
18.
A nonhemolytic strain of Staphylococcus aureus was transformed with deoxyribonucleic acid extracted from two hemolytic strains of S. aureus. In each case the hemolysin pattern after transformation was identical to that of the donor strain. However, bacteriophage type, serotypes, and other biological properties of the recipient strain remained unaffected.  相似文献   

19.
Staphylococcus aureus is a major pathogen responsible for both nosocomial and community-acquired infections. Central to its virulence is its ability to secrete haemolysins, pore-forming toxins and cytolytic peptides. The large number of membrane-damaging toxins and peptides produced during S. aureus infections has hindered a precise understanding of their specific roles in diseases. Here, we used comprehensive libraries of recombinant toxins and synthetic cytolytic peptides, of S. aureus mutants and clinical strains to investigate the role of these virulence factors in targeting human macrophages and triggering IL-1β release. We found that the Panton Valentine leukocidin (PVL) is the major trigger of IL-1β release and inflammasome activation in primary human macrophages. The cytolytic peptides, δ-haemolysin and PSMα3; the pore-forming toxins, γ-haemolysin and LukDE; and β-haemolysin synergize with PVL to amplify IL-1β release, indicating that these factors cooperate with PVL to trigger inflammation. PVL(+) S. aureus causes necrotizing pneumonia in children and young adults. The severity of this disease is due to the massive recruitment of neutrophils that cause lung damage. Importantly, we demonstrate that PVL triggers IL-1β release in human alveolar macrophages. Furthermore, IL-1β released by PVL-intoxicated macrophages stimulates the secretion of the neutrophil attracting chemokines, IL-8 and monocyte chemotactic protein-1, by lung epithelial cells. Finally, we show that PVL-induced IL-8/monocyte chemotactic protein-1 release is abolished by the inclusion of IL-1 receptor antagonist (IL-1Ra) in a mixed culture of lung epithelial cells and macrophages. Together, our results identify PVL as the predominant S. aureus secreted factor for triggering inflammasome activation in human macrophages and demonstrate how PVL-intoxicated macrophages orchestrate inflammation in the lung. Finally, our work suggests that anakinra, a synthetic IL-1Ra, may be an effective therapeutic agent to reduce the massive neutrophils infiltration observed during necrotizing pneumonia and decrease the resulting host-mediated lung injury.  相似文献   

20.
Virulence and antibiotic resistance are significant determinants of the types of infections caused by Staphylococcus aureus and paediatric groups remain among the most commonly affected populations. The goal of this study was to characterise virulence genes of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains isolated from a paediatric population of a Colombian University Hospital during 2009. Sixty MSSA and MRSA isolates were obtained from paediatric patients between zero-14 years. We identified the genes encoding virulence factors, which included Panton-Valentine leucocidine (PVL), staphylococcal enterotoxins A-E, exfoliative toxins A and B and toxic shock syndrome toxin 1. Typing of the staphylococcal chromosome cassette mec (SCCmec) was performed in MRSA strains. The virulence genes were more diverse and frequent in MSSA than in MRSA isolates (83% vs. 73%). MRSA strains harboured SCCmec types IVc (60%), I (30%), IVa (7%) and V (3%). SCCmec type IVc isolates frequently carried the PVL encoding genes and harboured virulence determinants resembling susceptible strains while SCCmec type I isolates were often negative. PVL was not exclusive to skin and soft tissue infections. As previously suggested, these differences in the distribution of virulence factor genes may be due to the fitness cost associated with methicillin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号