首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.

Aim

To examine the inhibition effects of rhizosphere fungal strain MF‐91 on the rice blast pathogen Magnaporthe grisea and sheath blight pathogen Rhizoctonia solani.

Methods and Results

Rhizosphere fungal strain MF‐91 and its metabolites suppressed the in vitro mycelial growth of R. solani. The inhibitory effect of the metabolites was affected by incubation temperature, lighting time, initial pH and incubation time of rhizosphere fungal strain MF‐91. The in vitro mycelial growth of M. grisea was insignificantly inhibited by rhizosphere fungal strain MF‐91 and its metabolites. The metabolites of rhizosphere fungal strain MF‐91 significantly inhibited the conidial germination and appressorium formation of M. grisea. Moreover, the metabolites reduced the disease index of rice sheath blight by 35·02% in a greenhouse and 57·81% in a field as well as reduced the disease index of rice blast by 66·07% in a field. Rhizosphere fungal strain MF‐91 was identified as Chaetomium aureum based on the morphological observation, the analysis of 18S ribosomal DNA internal transcribed spacer sequence and its physiological characteristics, such as the optimal medium, temperature and initial pH for mycelial growth and sporulation production.

Conclusions

Rhizosphere fungus C. aureum is effective in the biocontrolling of rice blast pathogen M. grisea and sheath blight pathogen R. solani both in in vitro and in vivo conditions.

Significance and Impact of the Study

This study is the first to show that rhizosphere fungus C. aureum is a potential fungicide against rice blast and sheath blight pathogens.  相似文献   

2.

Background  

Alfalfa (Medicago sativa) is a major forage crop. The genetic progress is slow in this legume species because of its autotetraploidy and allogamy. The genetic structure of this species makes the construction of genetic maps difficult. To reach this objective, and to be able to detect QTLs in segregating populations, we used the available codominant microsatellite markers (SSRs), most of them identified in the model legume Medicago truncatula from EST database. A genetic map was constructed with AFLP and SSR markers using specific mapping procedures for autotetraploids. The tetrasomic inheritance was analysed in an alfalfa mapping population.  相似文献   

3.

Background  

Aluminum (Al) toxicity is an important factor limiting crop production on acid soils. However, little is known about the mechanisms by which legumes respond to and resist Al stress. To explore the mechanisms of Al toxicity and resistance in legumes, we compared the impact of Al stress in Al-resistant and Al-sensitive lines of the model legume, Medicago truncatula Gaertn.  相似文献   

4.

Background  

Rhizobium leguminosarum bv. viciae (Rlv) is a soil bacterium which can form nitrogen-fixing symbiotic relationships with leguminous plants. Numerous rhizobial strains found in soils compete with each other. Competition can occur both during the saprophytic growth phase in the rhizosphere and inside plant tissues, during the symbiotic phase. Competition is important as it may affect the composition of rhizobial populations present in the soil and in the root nodules of plants.  相似文献   

5.

Background  

The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae.  相似文献   

6.

Background  

Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.). In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco.  相似文献   

7.

Background  

Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant), in particular to identify proteins and RNA molecules, including microRNA (miRNA).  相似文献   

8.
9.

Background  

White clover (Trifolium repens L.) is an outbreeding allotetraploid species and an important forage legume in temperate grassland agriculture. Comparison of sub-genome architecture and study of nucleotide sequence diversity within allopolyploids provides insight into evolutionary divergence mechanisms, and is also necessary for the development of whole-genome sequencing strategies. This study aimed to evaluate the degree of divergence between the O and P' sub-genomes of white clover through sequencing of BAC clones containing paired homoeoloci. The microsyntenic relationships between the genomes of white clover and the model legumes Lotus japonicus and Medicago truncatula as well as Arabidopsis thaliana were also characterised.  相似文献   

10.

Background  

Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs).  相似文献   

11.

Background  

Phaseolus vulgaris (common bean) is the second most important legume crop in the world after soybean. Consequently, yield losses due to fungal infection, like Uromyces appendiculatus (bean rust), have strong consequences. Several resistant genes were identified that confer resistance to bean rust infection. However, the downstream genes and mechanisms involved in bean resistance to infection are poorly characterized.  相似文献   

12.
13.

Background  

Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T.  相似文献   

14.
15.
Rhizoremediation is a specific type of phytoremediation involving both plants and their rhizosphere associated microbes. In the present study Pennisetum pedicellatum and rhizosphere associated degrading strains were evaluated for chlorpyrifos remediation. Time-course pot experiments were conducted in greenhouse with P. pedicellatum grown in soil amended with chlorpyrifos at the concentrations of 10, 25, 50, 75 and 100 mg/kg for 60 days. The half life of chlorpyrifos varied from 19.25 to 13.02 days in planted treatments. Residual concentrations of chlorpyrifos were negatively correlated with abundance of degrading microorganisms in rhizosphere. The isolated species of Bacillus, Rhodococcus and Stenotrophomonas were evaluated for their degrading potential in mineral medium. A novel isolated strain of potential degrader Stenotrophomonas maltophilia named as MHF ENV20 showed better survival and degradation at high concentration of chlorpyrifos. Degradation of chlorpyrifos by strain MHF ENV20, 100, 50 and 33.3% degradation within the time period of 48 h (h), 72 and 120 h at 50,100 and 150 mg/kg concentrations, further the gene encoding the organophosphorous hydrolase (mpd) was amplified using PCR amplification strategy and predesigned primers. Our findings indicate that rhizosphere remediation is effective bioremediation technique to remove chlorpyrifos residues from soil. P. pedicellatum itself, in addition to the rhizosphere bacterial consortium, seemed to play an important role in reducing chlorpyrifos level in soil. High chlorpyrifos tolerance and rhizospheric degradation capability of P. pedicellatum, makes this plant suitable for decontamination and remediation of contaminated sites. The ability to survive at higher concentration of chlorpyrifos and enhanced degrading potential due to presence of mpd gene make S. maltophilia MHF ENV20 an ideal candidate for its application in chlorpyrifos remediation.  相似文献   

16.

Background  

Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N -acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest.  相似文献   

17.

Background  

In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L.), also known as narrow-leaf lupin (NLL) is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch.  相似文献   

18.

Aims

Trifolium subterraneum L. is the predominant annual pasture legume in southern Australia. Cultivars with improved phosphorus (P) foraging ability would improve the P-use efficiency of agricultural systems. We therefore investigated variation in root traits related to P-uptake among six cultivars.

Methods

Micro-swards were grown at six levels of P in field soil with indigenous arbuscular mycorrhizal (AM) fungi for six weeks. Dry matter yield, tissue P concentration, rhizosphere carboxylates, AM fungal colonisation and root morphological traits were measured.

Results

The cultivars showed similar shoot and root yield responses to P supply. Average root diameter did not change, specific root length (SRL) increased and root tissue density (RTD) decreased with increased P supply. Amounts of total rhizosphere carboxylates were low (<1.2 nmol cm?1 root). The percentage of root length colonised by AM fungi was greatest (29–43 %) at an intermediate level (8 mg kg?1 dry soil) of P supply.

Conclusions

Most differences among cultivars were reasonably consistent across P supply levels, indicating greater numbers of lines could be screened reliably at a single P level. Low colonisation by AM fungi at low P supply deserves consideration when selecting soils for cultivar comparisons. Increased SRL and decreased RTD at high P supply likely result from self-shading within the micro-swards and warrant further investigation.
  相似文献   

19.

Background  

Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity.  相似文献   

20.

Background  

Red clover (Trifolium pratense L.) is a major forage legume that has a strong self-incompatibility system and exhibits high genetic diversity within populations. For several crop species, integrated consensus linkage maps that combine information from multiple mapping populations have been developed. For red clover, three genetic linkage maps have been published, but the information in these existing maps has not been integrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号