首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The impact of exclusion of solar UV-B (280–320 nm) and UV-A+B (280–400 nm) radiation on the root nodules was studied in soybean(Glycine max var. MACS 330). Soybean plants were grown in the tropical region of Indore (Latitude-22.4°N), India under field conditions in metal cages covered with polyester exclusion filters that specifically cut off UV-B (<320 nm) and UV-A+B (<400 nm) radiation; control plants were grown under ambient solar radiation. Leghemoglobin content was analyzed in the root nodules on the 50th day after emergence of seedlings. Exclusion of UV radiations significantly enhanced the leghemoglobin content in the nodules on fresh weight basis; 25% and 45% higher amount of leghemoglobin were present in the nodules after the exclusion of UV-B and UV-A+B radiation respectively. Analysis by native and SDS-PAGE showed high intense bands of leghemoglobin after the exclusion of UV-A+B as compared to control. Exclusion of UV radiation also enhanced the growth of roots as well as aerial parts of the plants. UV Exclusion increased nodulation by increase in the number and size of nodules. The results are discussed in the light of advantage of exclusion for enhancing protein/nitrogen content in the plants.  相似文献   

2.
1. Lake Titicaca is a large, high altitude (3810 m a.s.l.) tropical lake (16°S, 68°W) that lies on the border of Bolivia and Perú, receiving high fluxes of ultraviolet radiation (UVR) throughout the year. Our studies were conducted during September of 1997 with the main objective of studying the impact of solar UVR upon phytoplankton photosynthesis.
2. Water samples were taken daily and incubated in situ (down to 14 m depth) under three radiation treatments to study the relative responses to PAR (Photosynthetic Available Radiation, 400–700 nm), UV-A (320–400 nm), and UV-B (280–320 nm) radiation.
3. Photosynthetic inhibition by UVR in surface waters was about 80%, with UV-A accounting for 60% and UV-B for 20%; the inhibition by high levels of PAR was less than 20%. The inhibition due to UVR decreased with depth so that there were no significant differences between treatments at 8.5 m depth.
4. The amount of inhibition per unit energy received by phytoplankton indicates that even though there was a significant inhibition of photosynthesis due to UVR, species in Lake Titicaca seem to be better adapted than species in high latitude environments.
5. The cellular concentration of UV-absorbing compounds, a possible mechanism of photoadaptation, was low in phytoplanktonic species. However, they were abundant in zooplankton, suggesting a high rate of bioaccumulation through the diet.  相似文献   

3.
4.
Effects of UV-B radiation on photosynthesis and growth of terrestrial plants   总被引:25,自引:0,他引:25  
The photosynthetic apparatus of some plant species appears to be well-protected from direct damage from UV-B radiation. Leaf optical properties of these species apparently minimizes exposure of sensitive targets to UV-B radiation. However, damage by UV-B radiation to Photosystem II and Rubisco has also been reported. Secondary effects of this damage may include reductions in photosynthetic capacity, RuBP regeneration and quantum yield. Furthermore, UV-B radiation may decrease the penetration of PAR, reduce photosynthetic and accessory pigments, impair stomatal function and alter canopy morphology, and thus indirectly retard photosynthetic carbon assimilation. Subsequently, UV-B radiation may limit productivity in many plant species. In addition to variability in sensitivity to UV-B radiation, the effects of UV-B radiation are further confounded by other environmental factors such as CO2, temperature, light and water or nutrient availability. Therefore, we need a better understanding of the mechanisms of tolerance to UV-B radiation and of the interaction between UV-B and other environmental factors in order to adequately assess the probable consequences of a change in solar radiation.Abbreviations Amax light and CO2 saturated rate of oxygen evolution - Ci internal CO2 concentration - Fv/Fm ratio of variable to total fluorescence yield - PAR photosynthetically active radiation (400–700 nm) - PS II Photosystem II - app apparent quantum yield of photosynthesis - SLW specific leaf weight - UV-B ultraviolet-B radiation between 290–320 nm  相似文献   

5.
6.
The effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities inPhaseolus mungo L. was investigated under field condition. Supplementation of UV-A enhanced the synthesis of chlorophyll and carotenoids than the UV-B supplemented plants. Significant increase was seen in the concentration of UV-B absorbing compounds of UV-B treated plants. Increase of PS 2 activity in UV-A treated plants was seen. Changes in photosynthetic activity were measured in terms of PS 2 mediated O2 evolution and Chl a fluorescence.  相似文献   

7.
以青藏高原矮嵩草草甸的主要伴随种美丽风毛菊为材料,通过滤除太阳辐射光谱中UV-B成分的模拟试验,研究了强太阳UV-B辐射对高山植物光合作用、光合色素和紫外吸收物质的影响.结果表明:与对照相比,弱UV-B处理能促使美丽风毛菊叶片净光合速率增加和提高稳态PSⅡ光化学效率;对照中叶片厚度的相对增加能弥补单位叶面积光合色素的光氧化损失,是高山植物对强UV B辐射的一种适应方式.短期滤除UV-B辐射处理时紫外吸收物质含量几乎没有变化,说明高山植物叶表皮层中该类物质受环境波动的影响较小.强UV-B环境下光合色素的相对增加是一种表象,而青藏高原强太阳UV-B辐射对高山植物美丽风毛菊的光合生理过程仍具有潜在的负影响.  相似文献   

8.
9.
Several species of marine benthic algae, four species of phytoplankton and two species of seagrass have been subjected to ultraviolet B irradiation for varying lengths of time and the effects on respiration, photosynthesis and fluorescence rise kinetics studied. No effect on respiration was found. Photosynthesis was inhibited to a variable degree in all groups of plants after irradiation over periods of up to 1 h and variable fluorescence was also inhibited in a similar way. The most sensitive plants were phytoplankton and deep-water benthic algae. Intertidal benthic algae were the least sensitive to UV-B irradiation and this may be related to adaptation, through the accumulation of UV-B screening compounds, to high light/high UV-B levels. Inhibition of variable fluorescence (Fv) of the fluorescence rise curve was a fast and sensitive indicator of UV-B damage. Two plants studied, a brown alga and a seagrass, showed very poor recovery of Fv over a period of 32 h.Abbreviations Fm- fluorescence yield with reaction centres closed - Fo- fluorescence yield with reaction centres open - Fv- variable fluorescence - PAR- photosynthetically active radiation - P680- primary donor of Photosystem II - O- primary quencher of Photosystem II - QA- primary quinone acceptor of Photosystem II - UV-B- ultraviolet B  相似文献   

10.
在4.52 kJ*m-2*d-1 UV-BBE的UV-B辐射和700 μmol*mol-1的CO2浓度人工模拟复合处理下,研究了对蚕豆(Vicia faba L.)幼苗的生长和光合作用的影响.结果表明,UV-B辐射单因子明显降低蚕豆幼苗的株高、叶面积和生物量,CO2单因子的作用正好相反,二者的作用程度随着处理时间的延长而增大.UV-B辐射和CO2复合作用对蚕豆幼苗的生长影响不明显.同时,增强的UV-B辐射单因子还使蚕豆幼苗的光合速率、气孔导度和水分利用率下降,CO2单因子的作用也相反,且CO2单因子的促进程度大于UV-B辐射单因子的抑制程度.而在UV-B辐射和CO2复合作用下,蚕豆幼苗的光合作用参数基本与对照同步.分析认为,UV-B辐射和CO2复合作用对蚕豆幼苗的影响是一种拮抗作用.  相似文献   

11.
采用cDNA代表性差异分析 (RDA)技术 ,对盐藻在盐胁迫时差异表达的基因进行了分离鉴定 .在分离到的 10个基因中 ,有 5个与已知基因同源 (包括叶绿素a b结合蛋白基因、蛋白磷酸酶I催化亚基基因和 3个核糖体蛋白基因 ) ,还有 5个未知功能基因则是首次在盐藻中被分离 .值得注意的是 ,所有这 5个已知基因的功能都与细胞分裂或盐胁迫有关 .结果表明 :取样时盐藻细胞仍处于恢复阶段 ,所分离到的基因对于盐藻耐盐可能具有重要意义 ;蛋白磷酸酶I的下调表达可能是盐藻调节离子平衡的一个重要过程和细胞分裂受阻的原因所在 ;盐藻减缓细胞分裂速度可能是为了减少能量消耗 ,以留出足够的能量来应对盐胁迫 ;其它 5个未知基因可能也与盐藻适应盐胁迫机制有关 .  相似文献   

12.
Solar ultraviolet-B (UV-B) radiation penetrates plant canopies to a different degree than photosynthetically active radiation (PAR) because UV-B is diffused to a greater degree by the atmosphere. We measured both global (total) and diffuse solar radiation in canopy gaps of a semideciduous tropical forest in Panama. Measurements were simultaneously made in the UV-B and PAR wavebands. Compared to unobstructed measurements taken outside the forest, the sunlit portions of gaps were depleted in the proportion of UV-B relative to PAR, especially at midday. Shaded areas, in contrast, were always richer in UV-B relative to PAR, but the magnitude of the change varied greatly. Presumably this variation was due to the differences in the directional nature of diffuse solar UV-B radiation as compared to diffuse PAR. Measurements in the gaps showed substantial reductions in the proportion of radiation in the diffuse components of both the UV-B and PAR wavebands. However, because of the greater proportion of UV-B which is diffuse, it tended to predominate in shaded areas. Similar patterns were seen in measurements taken at temperate latitudes. Response of shade- and gap-dwelling plants to these high UV-B:PAR ratios has received little attention.  相似文献   

13.
The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species.  相似文献   

14.
15.
The influence of UV-B irradiation on photosynthetic oxygen evolution by isolated spinach thylakoids has been investigated using thermoluminescence measurements. The thermoluminescence bands arising from the S2QB - (B band) and S2QA (Q band) charge recombination disappeared with increasing UV-B irradiation time. In contrast, the C band at 50°C, arising from the recombination of QA - with an accessory donor of Photosystem II, was transiently enhanced by the UV-B irradiation. The efficiency of DCMU to block QA to QB electron transfer decreased after irradiation as detected by the incomplete suppression of the B band by DCMU. The flash-induced oscillatory pattern of the B band was modified in the UV-B irradiated samples, indicating a decrease in the number of centers with reduced QB. Based on the results of this study, UV-B irradiation is suggested to damage both the donor and acceptor sides of Photosystem II. The damage of the water-oxidizing complex does not affect a specific S-state transition. Instead, charge stabilization is enhanced on an accessory donor. The acceptor-side modifications decrease the affinity of DCMU binding. This effect is assumed to reflect a structural change in the QB/DCMU binding site. The preferential loss of dark stable QB - may be related to the same structural change or could be caused by the specific destruction of reduced quinones by the UV-B light.Abbreviations Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA first quinone electron acceptor of PS II - QB second quinone electron acceptor of PS II - Tyr-D accessory electron donor of PS II - S0-S4 charge storage states of the water-oxidizing complex  相似文献   

16.
The response of the bipolar moss Sanionia uncinata (Hedw.) Loeske to ambient and enhanced UV‐B radiation was investigated at an Antarctic (Léonie Island, 67°35′ S, 68°20′ W) and an Arctic (Ny‐Alesund, 78°55′ N, 11°56′ E) site, which differed in ambient UV‐B radiation (UV‐BR: 280–320 nm) levels. The UV‐BR effects on DNA damage and photosynthesis were investigated in two types of outdoor experiments. First of all, sections of turf of S. uncinata were collected in an Arctic and Antarctic field site and exposed outdoors to ambient and enhanced UV‐BR for 2 d using UV‐B Mini‐lamps. During these experiments, chlorophyll a fluorescence, chlorophyll concentration and cyclobutyl pyrimidine dimer (CPD) formation were measured. Secondly, at the Antarctic site, a long‐term filter experiment was conducted to study the effect of ambient UV‐BR on growth and biomass production. Additionally, sections of moss turf collected at both the Antarctic and the Arctic site were exposed to UV‐BR in a growth chamber to study induction and repair of CPDs under controlled conditions. At the Antarctic site, a summer midday maximum of 2·1 W m?2 of UV‐BR did not significantly affect effective quantum yield (ΔF/Fm′) and the ratio of variable to maximal fluorescence (Fv/Fm). The same was found for samples of S. uncinata exposed at the Arctic site, where summer midday maxima of UV‐BR were about 50% lower than at the Antarctic site. Exposure to natural UV‐BR in summer did not increase CPD values significantly at both sites. Although the photosynthetic activity remained largely unaffected by UV‐B enhancement, DNA damage clearly increased as a result of UV‐B enhancement at both sites. However, DNA damage induced during the day by UV‐B enhancement was repaired overnight at both sites. Results from the long‐term filter experiment at the Antarctic site indicated that branching of S. uncinata was reduced by reduction of ambient summer levels of UV‐BR, whereas biomass production was not affected. Exposure of specimens collected from both sites to UV‐BR in a growth chamber indicated that Antarctic and Arctic S. uncinata did not differ in UV‐BR‐induced DNA damage. It was concluded that S. uncinata from both the Antarctic and the Arctic site is well adapted to ambient levels of UV‐BR.  相似文献   

17.
The physiological effects unique to solar ultraviolet (UV)-B exposure (280-315 nm) are difficult to accurately replicate in the laboratory. This study evaluates the effectiveness of the sodium urate anion in a liquid filter that yields a spectrum nearly indistinguishable from the solar UV-B spectrum while filtering the emissions of widely used UV-B lamps. The photochemical properties and stability of this filter are examined and weighed against a typical spectrum of ground-level solar UV-B radiation. To test the effectiveness of this filter, light-saturated photosynthetic oxygen evolution rates were measured following exposure to UV-B filtered either by this urate filter or the widely used cellulose acetate (CA) filter. The ubiquitous marine Chlorophyte alga Dunaliella tertiolecta was tested under identical UV-B flux densities coupled with ecologically realistic fluxes of UV-A and visible radiation for 6 and 12 h exposures. These results indicate that the urate-filtered UV-B radiation yields minor photosynthetic inhibition when compared with exposures lacking in UV-B. This is in agreement with published experiments using solar radiation. In sharp contrast, radiation filtered by CA filters produced large inhibition of photosynthesis.  相似文献   

18.
Häder  Donat-P.  Porst  Markus  Santas  Regas 《Plant Ecology》1998,139(2):167-175
Photoinhibition of photosynthesis, defined as reversible decrease in the effective photosynthetic quantum yield, was measured in the Mediterranean red alga, Peyssonnelia squamata, using pulse amplitude modulation (PAM) chlorophyll fluorescence and oxygen production on site. This alga is adapted to very low fluence rates of solar radiation and is easily inhibited by exposure to excessive radiation. At high solar angles its photosynthetic capacity is impaired even in its natural habitat, in the protective shade of overhanging rocks. Oxygen production was maximal at 5 m depth and decreased to almost zero at the surface. When exposed at the surface oxygen production ceased within 16 min. The optimal photosynthetic quantum yield, defined as Fv/Fm, was about 0.45 in dark-adapted specimens. After 30 min of exposure to unattenuated solar radiation the (effective, Fv/Fm) quantum yield decreased to below 0.1. Removing solar UV (especially UV-B) significantly reduced photoinhibition: the quantum yield of a sample exposed under a UV-B cut-off filter was double that of a sample exposed to full solar radiation after 30 min exposure. Recovery from photoinhibition took several hours and was not complete after prolonged exposure (1.5 h) to direct solar radiation. The degree of photoinhibition depended on the depth at which the thalli were exposed. Recovery from photoinhibition was complete within 2 h except when the algae were exposed at the surface. When measured over the whole day, the effective photosynthetic quantum yield significantly decreased by about 25% from initially high values toward early afternoon and rose again towards evening. The data indicate that this alga is adapted to very low irradiances and is easily inhibited by excessive solar radiation; solar UV contributes substantially to the observed photoinhibition.  相似文献   

19.
Barley (Hordeum vulgare L.) was grown with UV-B (280–320 nm) at levels simulating 25 nr 5% ozone depletion on the date of the summer solstice al 40°N latitude, with UV-A (320–400 nm), or with no supplemental irradiation. In plant growth chambers providing 300 μmol m?2 s?1 photosynthetically active radiation (PAR). UV-B-grown leaves elongated more slowly than controls but reached the same final length 1 day later. Leal specific fresh weight (mass leaf area?1) was significantly increased by UV-B after the 7th day of growth. IV-B did not significantly affect leaf area, fresh weight, dry weight, total chlorophylls, total carotenoids or photosynthetic quantum efficiency. CO2 assimilation was decreased by UV-B only at internal CO2 levels above 250 μl l?1. By the 8th day of growth, UV-B increased flavonoid (saponarin and lutonarin) accumulation in both the lower epidermis and the mesophyll: about 40% of the saponarin and 20% of the lutonarin were in the lower epidermis under all experimental conditions. Glasshouse conditions proved too variable for reproducible determination of growth and photosynthesis but were reliable for determining developmental changes in flavonoid (saponarin and lutonarin) accumulation and provided up to 800 μmol m?2 s?1 PAR. In the glasshouse UV-B-grown leaves had more flavonoids than controls al all stages from 5 to 30 days after planting: ca 509 more saponarin and 100% more lutonarin. Levels of soluble (vacuolar) ferulic acid esters were similar under all conditions on day 5. and on day 20 or later, but were significantly higher in UV-B-grown plants on days 10 and 15. UV-B decreased insoluble (cell-wall-bound) ferulic acid esters on a whole leaf basis but significantly increased this fraction in the lower epidermis. UV-A had no significant effects on growth, photosynthesis or ferulic acid, but it slightly increased flavonoid accumulation. The results are discussed in terms of secondary phenolics as a tissue-specific, developmentally regulated adaptive response to UV-B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号