首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane fraction of intermediate density between inner and outer membrane was isolated by density gradient centrifugation from osmotically disrupted mitochondria of rat liver, brain, and kidney. The fraction was hexokinase rich and could therefore be further purified using specific antibodies against hexokinase and immunogold labelling techniques. In agreement with recent findings the gradient fraction which cosedimented with hexokinase contained the boundary membrane contact sites because it was composed of outer and inner membrane components and beside hexokinase, was enriched also by activity of creatine kinase and nucleoside diphosphate kinase. In contrast the activity of adenylate kinase appeared to be concentrated beyond the contact sites in the outer membrane fraction. By employing surface proteolysis analysis and specific blockers of the outer membrane pore we observed that the location of the kinases relative to the membrane components in the contact fraction resembled that of intact mitochondria. This specific organization of some peripheral kinases in the contact sites suggested an important role of the voltage dependence of the outer membrane pore, in that the pore may become limiting in anion exchange because of influence of the inner membrane potential on the closely attached outer membrane. Such control of anion exchange would lead to a dynamic compartmentation at the mitochondrial surface by the formation of contact sites, which may explain the preferential utilization of cytosolic creatine by the mitochondrial creatine kinase, as postulated in the phosphocreatine shuttle.  相似文献   

2.
The outer mitochondrial membrane pore at a voltage above 20 to 30 mV can adopt a state of low conductance which may restrict free permeability of mitochondrial substrates. In order to obtain insight into the physiological meaning of this property we took advantage of the fact that the low conductance pore state could be induced by a polyanion in lipid bilayer membranes as well as in intact mitochondria. Upon reconstitution in artificial bilayers the pore in this substate became exclusively cation selective when the polarity of the applied voltage was negative on the cis-side. This behaviour of the pore would explain why induction of the low conductance pore state in intact mitochondria led to a complete inhibition of mitochondrial intermembranous kinases, such as creatine kinase and adenylate kinase, but not of peripheral kinases, for example hexokinase, when utilizing external ATP. The possibility that the inner membrane potential might be transduced to the outer membrane in the contact sites, suggests the existence of cation selective pores in these sites. This aspect may be important in the regulation of peripheral kinases like creatine kinase, nucleoside diphosphate kinase and adenylate kinase which are located behind the outer mitochondrial membrane.  相似文献   

3.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

4.
The creatine/phosphocreatine circuit provides an efficient energy buffering and transport system in a variety of cells with high and fluctuating energy requirements. It connects sites of energy production (mitochondria, glycolysis) with sites of energy consumption (various cellular ATPases). The cellular creatine/phosphocreatine pool is linked to the ATP/ADP pool by the action of different isoforms of creatine kinase located at distinct subcellular compartments. Octameric mitochondrial creatine kinase (MtCK), together with porin and adenine nucleotide translocase, forms a microcompartment at contact sites between inner and outer mitochondrial membranes and facilitates the production and export into the cytosol of phosphocreatine. MtCK is probably in direct protein-protein contact with outer membrane porin, whereas interaction with inner membrane adenine nucleotide translocase is rather mediated by acidic phopholipids (like cardiolipin) present in significant amounts in the inner membrane. Octamer-dimer transitions of MtCK as well as different creatine kinase substrates have a profound influence on controlling mitochondrial permeability transition (MPT). Inactivation by reactive oxygen species of MtCK and destabilization of its octameric structure are factors that contribute to impairment of energy homeostasis and facilitated opening of the MPT pore, which eventually lead to tissue damage during periods of ischemia/reperfusion.  相似文献   

5.
The outer mitochondrial membrane pore (VDAC) changes its structure either voltage-dependently in artificial membranes or physiologically by interaction with the adenine nucleotide translocase (ANT) in the c-conformation. This interaction creates contact sites and leads in addition to a specific organisation of cytochrome c in the VDAC-ANT complexes. The VDAC structure that is specific for contact sites generates a signal at the surface for several proteins in the cytosol to bind with high capacity, such as hexokinase, glycerol kinase and Bax. If the VDAC binding site is not occupied by hexokinase, the VDAC-ANT complex has two critical qualities: firstly, Bax gets access to cytochrome c and secondly the ANT is set in its c-conformation that easily changes conformation into an unspecific channel (uniporter) causing permeability transition. Activity of bound hexokinase protects against both, it hinders Bax binding and employs the ANT as anti-porter. The octamer of mitochondrial creatine kinase binds to VDAC from the inner surface of the outer membrane. This firstly restrains interaction between VDAC and ANT and secondly changes the VDAC structure into low affinity for hexokinase and Bax. Cytochrome c in the creatine kinase complex will be differently organised, not accessible to Bax and the ANT is run as anti-porter by the active creatine kinase octamer. However, when, for example, free radicals cause dissociation of the octamer, VDAC interacts with the ANT with the same results as described above: Bax-dependent cytochrome c release and risk of permeability transition pore opening.  相似文献   

6.
Complexes made up of the kinases, hexokinase and glycerol kinase, together with the outer mitochondrial membrane voltage-dependent anion channel (VDAC) protein, porin, and the inner mitochondrial membrane protein, the adenine nucleotide translocator, are involved in tumorigenesis, diabetes mellitus, and central nervous system function. Identification of these two mitochondrial membrane proteins, along with an 18 kD protein, as components of the peripheral benzodiazepine receptor, provides independent confirmation of the interaction of porin and the adenine nucleotide translocator to form functional contact sites between the inner and outer mitochondrial membranes. We suggest that these are dynamic structures, with channel conductances altered by the presence of ATP, and that ligand-mediated conformational changes in the porin-adenine nucleotide translocator complexes may be a general mechanism in signal transduction.  相似文献   

7.
Mitochondrial creatine kinase in brain mitochondria appears to be located at two different intramitochondrial sites. By using immunogold-labeling techniques, a peripheral immunoreactivity was localized between the two boundary membranes, while an additional, central immunoreactivity was found at the crista surface. The peripheral enzyme was accessible to the antibodies after treatment of the brain mitochondria with 100-300 μg digitonin/mg mitochondrial protein, which left 75% of the activity bound to the membranes. Electron microscopic analyses revealed that 43% of the labeled, peripheral creatine kinase was bound at those places where outer membrane vesicles remained attached to the inner envelope membrane, suggesting that the enzyme is in involved in contact formation between outer and inner mitochondrial membranes. Postembedding staining of mitochondria on thin sections of brain tissue or in the isolated state led to the observation of a second location of creatine kinase inside the mitochondria, along the cristae, which was not accessible to the antibodies in isolated, digitonin-treated mitochondria.  相似文献   

8.
The mathematical model of the compartmentalized energy transfer system in cardiac myocytes presented includes mitochondrial synthesis of ATP by ATP synthase, phosphocreatine production in the coupled mitochondrial creatine kinase reaction, the myofibrillar and cytoplasmic creatine kinase reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional exchange of metabolites between different compartments. The model was used to calculate the changes in metabolite profiles during the cardiac cycle, metabolite and energy fluxes in different cellular compartments at high workload (corresponding to the rate of oxygen consumption of 46 mu atoms of O.(g wet mass)-1.min-1) under varying conditions of restricted ADP diffusion across mitochondrial outer membrane and creatine kinase isoenzyme "switchoff." In the complete system, restricted diffusion of ADP across the outer mitochondrial membrane stabilizes phosphocreatine production in cardiac mitochondria and increases the role of the phosphocreatine shuttle in energy transport and respiration regulation. Selective inhibition of myoplasmic or mitochondrial creatine kinase (modeling the experiments with transgenic animals) results in "takeover" of their function by another, active creatine kinase isoenzyme. This mathematical modeling also shows that assumption of the creatine kinase equilibrium in the cell may only be a very rough approximation to the reality at increased workload. The mathematical model developed can be used as a basis for further quantitative analyses of energy fluxes in the cell and their regulation, particularly by adding modules for adenylate kinase, the glycolytic system, and other reactions of energy metabolism of the cell.  相似文献   

9.
Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC–HK and the ANT (adenine nucleotide translocator)–CK–VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT–CK–VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC–HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to − 160 mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen.  相似文献   

10.
The fractionation of mitochondrial membranes on discontinuous sucrose gradient leads to the obtaining of free outer membranes, free inner membranes and two distinct membrane contact site populations characterized as follows. Only outer membrane contact sites and inner membrane contact sites bind hexokinase. Outer membranes and outer membrane contact sites are cholesterol-rich fractions. The endogenous dolichol content is twice fold higher in outer membranes and outer membrane contact sites than in inner membranes and inner membrane contact sites, only the biosynthesis of dolichol in inner membrane contact sites is not stimulated by addition of exogenous [14C]-IPP and FPP. The glycosylation of endogenous dolichol from labeled nucleotide-sugars (UDP-GlcNAc, GDP-Man and UDP-Glc) leads to the synthesis of dolichol-pyrophosphoryl-sugars and dolichol-monophosphoryl-sugars with the rate of synthesis proportional to the dolichol content of each submitochondrial fraction.  相似文献   

11.
Cross-linking analysis of yeast mitochondrial outer membrane   总被引:2,自引:0,他引:2  
By enrichment of contact sites between the two mitochondrial boundary membranes it has been shown that this fraction contained a high activity of glutathione transferase and hexokinase which was bound to the outer membrane pore protein (Ohlendieck, K. et al. (1986) Biochim. Biophys. Acta 860, 672-689). Therefore, an interaction between the three proteins in the contact sites has been suggested. Cross-linking experiments with isolated outer membrane of yeast mitochondria show that glutathione transferase and the pore protein are already associated in the free outer membrane. Porin appeared to adopt four different oligomeric complexes in the membrane, including interactions with a 14 kDa polypeptide, which has glutathione transferase activity. The latter polypeptide could be phosphorylated by intrinsic or extrinsic protein kinases, while the porin itself was not phosphorylated. Yeast hexokinase, when bound to the outer membrane, was able to cross-link to the pore protein.  相似文献   

12.
The polyanion-induced substate of the outer mitochondrial membrane was studiedin vivo andin vitro. Study of the substate in artificial bilayers showed that it is highly cation selective. The induction of the substate in intact mitochondria leads to a complete inhibition of the intermembrane kinases, such as creatine kinase and adenylate kinase, which were excluded from the external ATP pool. Peripheral kinases, such as hexokinase, were blocked when they utilized internal ATP. The results with intact mitochondria suggested the existence of two regions of the outer membrane containing channels of different states, which may be involved in the regulation of intermembrane and peripheral kinases.  相似文献   

13.
Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by the voltage-dependent anion channel (VDAC, outer membrane) and the adenine nucleotide translocator (ANT, inner membrane). Earlier, we proposed a mechanism for the generation of the mitochondrial outer membrane potential (OMP) as a result of partial application of the inner membrane potential (IMP) to MOM through the electrogenic ANT-VDAC-HK inter-membrane contact sites. According to this previous mechanism, the Gibbs free energy of the hexokinase reaction might modulate the generated OMP (Lemeshko, Biophys. J., 2002). In the present work, a new computational model was developed to perform thermodynamic estimations of the proposed mechanism of IMP-HKI-mediated generation of OMP. The calculated OMP was high enough to electrically regulate MOM permeability for negatively charged metabolites through free, unbound VDACs in MOM. On the other hand, the positive-inside polarity of OMP generated by the IMP-HKI-mediated mechanism is expected to protect mitochondria against elevated concentrations of cytosolic Ca2+. This computational analysis suggests that metabolically-dependent generation of OMP in the brain mitochondria, controlled by many factors that modulate VDAC1-HKI interaction, VDAC's voltage-gating properties and permeability, might represent one of the physiological mechanisms of regulation of the brain energy metabolism and of neuronal death resistance, and might also be involved in various neurodegenerative disorders, such as Alzheimer's disease.  相似文献   

14.
VDAC changes its structure either voltage dependent in artificial membranes or physiologically by interaction with the c conformation of the adenine nucleotide translocator (ANT). This interaction creates contact sites and leads to a specific organisation of cytochrome c in the VDAC ANT complexes. The VDAC structure specific for contact sites thus generates a signal at the surface for several proteins in the cytosol to bind with high affinity such as hexokinase, glycerolkinase and Bax. If the VDAC binding site is not occupied by hexokinase, the VDAC ANT complex has two critical qualities: firstly, external Bax gets access to the cytochrome c and secondly the ANT stays in the c conformation that easily changes the structure to an unspecific uni-porter causing permeability transition. Activity of bound hexokinase protects against both, it hinders Bax binding and employs the ANT as specific anti-porter. The octamer of mitochondrial creatine kinase binds to VDAC from the inner surface of the outer membrane. This firstly hinders direct interaction between VDAC and ANT and secondly changes porin structure into low affinity for hexokinase and external Bax. Cytochrome c in the creatine kinase complex will be differently organised not accessible to Bax and the ANT is run as anti-porter by the active octamer. However, when free radicals cause dissociation of the octamer, VDAC interacts with the ANT with the same results as described above: Bax dependent cytochrome c release and risk of permeability transition pore opening.  相似文献   

15.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

16.
Dextran M20 was added to isolated rat liver mitochondria to mimic cytosolic macromolecules. Under these conditions, the morphological changes in the mitochondrial periphery that occur upon isolation of the organelle are restored, i.e. the volume of the intermembrane space decreases and the contact site frequency increases. The ADP routing from mitochondrial kinases at various locations was investigated by using the activities of oxidative phosphorylation and externally added pyruvate kinase as sensors for ADP transport into the matrix and extramitochondrial compartment, respectively. The studies reveal that a significant fraction of the ADP generated by either adenylate kinase in the intermembrane space or by outer membrane bound hexokinase isozyme I, is not accessible to extramitochondrial pyruvate kinase. Quantitative information on the ADP compartmentation in rat liver mitochondria was obtained by comparing the ADP supply from mitochondrial kinases to oxidative phosphorylation with that of non-bound, extramitochondrially located kinases. This approach allowed us to estimate the ADP diffusion gradients which were present across the outer membrane and between the compartment formed by bound hexokinase and the extramitochondrial compartment. In the presence of 10% dextran M20 these ADP gradients amounted to approximately 12 µM. The possible role of mitochondrial kinases in ADP transport into mitochondria in vivo is discussed. (Mol Cell Biochem 174: 43–51, 1997)  相似文献   

17.
Study on the mechanism of hexokinase isozyme II adsorption on mitochondrial membranes in the presence of 10 mM MgCl2 demonstrated that 0.16% of the total proteins of the soluble fraction and the total hexokinase pool are capable of reversible binding to the membrane. The plot for the dependence of the degree of enzyme adsorption on Mg2+ concentration is hyperbolic. Under these conditions, hexokinase competes favourably for the binding sites with lactate dehydrogenase and creatine kinase. Analysis of the adsorption capacity of natural and artificial phospholipid membranes showed that hexokinase isozyme II is adsorbed in much the same way on inner and outer mitochondrial membranes as well as on a mixture of membranes obtained from various sources and on lecithin liposomes. The adsorption properties of hexokinase isozyme II and of its functional analog--isozyme I--point to marked differences in the mechanism of their interaction with the membrane. In contrast with isozyme I, isozyme II of hexokinase undergoes kinetic alterations. Besides, it was found that mild autolysis of isozyme II is accompanied by a loss of the enzyme ability to bind to mitochondrial membranes. The data obtained suggest that the specificity of hexokinase isozyme II adsorption depends on the structural peculiarities of the protein but not on those of the mitochondrial membrane.  相似文献   

18.
19.
The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

20.
The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Iα (PKA-RIα) and the PKA-RIα- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein–protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号