首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
D. G. Bedo 《Genetica》1982,59(1):9-21
Double labelling of Simulium ornatipes polytene chromosomes with H3- and C14-thymidine shows that chromosome synthesis follows three distinct phases viz. a short phase of initiation in puffs and interbands spreading to more condensed regions; a long continuous labelling phase, then a discontinuously labelled end phase as bands complete their replication in temporal sequence. Analysis of H3 labelling patterns indicates that while heterochromatic bands replicate there is no clear correlation between heterochromatic or C-banding regions and band replication time. The major characteristic governing band replication time appears to be band size and density. However, in some bands this relationship is modified, perhaps it is suggested, by DNA organisation influencing the efficiency of replicons. The existence of great variability in homologous band replication times, even within a chromosome pair, indicates that the control of band replication is highly autonomous. It is suggested that polymorphisms at the molecular level determine this variation. Replication time of active nucleolar organisers is very long in contrast to the short replication of condensed inactive organisers. This may reflect differential polytenisation of ribosomal DNA as a result of a developmental polymorphism, or the amplification of ribosomal DNA by active nucleolar organisers.  相似文献   

3.
We present results from a nonautoradiographic study of DNA replication in polytene chromosomes from dipteran larvae. Monoclonal antibodies with specificity for 5-bromodeoxyuridine (BrdUrd) were used to localize by indirect immunofluorescence the sites of BrdUrd incorporation and to follow the dynamics of DNA synthesis in salivary gland cells of 4th instar Chironomus thummi larvae. This technique presents numerous advantages over autoradiographic procedures and allows mapping of DNA synthesis patterns at the level of resolution of one chromosomal band. Several replication patterns were observed, classified according to characteristic features, and tentatively assigned to specific periods of the S-phase. In early S-phase, DNA synthesis is first detectable in puffs and interbands, later in bands. Most chromosomal bands appear to initiate DNA synthesis synchronously; however, in bands within centromeric and heterochromatic regions the start of synthesis is delayed. At mid S-phase, all the bands show uniform staining. Subsequent staining patterns are increasingly differential with the bands displaying characteristic fluorescence intensities. As replication progresses through the late S-phase period, the chromosomes show a decreasing number of fluorescent bands. The last bands to terminate replication are located in centromeric and heterochromatic DNA-rich regions and a few bands of low DNA content in region IIAa-c.  相似文献   

4.
5.
Using gold labeled antibodies, we developed and tested an immunoelectron microscope (IEM) method for detection of protein localization in Drosophila melanogaster polytene chromosomes. This method is based on procedures widely used for indirect immunofluorescent (IF) staining of salivary gland polytene chromosome squashes. The application of IEM was evaluated by using specific antibodies against proteins earlier localized in both decondensed (interbands and puffs) and compact (bands) regions of polytene chromosomes. In all the experiments, IEM and IF images for homologous chromosome regions were compared. When applied to regions of loose structures, IEM enabled us to localize, with high precision, signals in fine bands, interbands and puffs. There was a good correspondence between immunogold EM and IF data. However, there was no correspondence for dense bands: gold particles were distributed at their boundaries, while the entire bands showed bright fluorescence. This discrepancy probably resulted from a poor penetration of antibodies conjugated to gold particles in the tightly packaged structures. From the results obtained it may by concluded that the IEM method is advantageous for studying the fine protein topography of loose decompacted regions of polytene chromosomes. And this must be taken into consideration when protein localization in polytene chromosomes is performed.  相似文献   

6.
An electronmicroscopical mapping of a number of regions of the polytene chromosomes of Ch. thummi salivary glands (3rd chromosome, right arm of the 1st chromosome, centromere regions, puffs 1-A2e, 1-A3ij, III-A5c and others) was done by the method of oriented ultrastructural sections of the unsquashed polytene chromosomes. The banding pattern on the electron micrograph was similar to the observed with the light microscope. The difference was that some doublets appeared as single cavity-containing bands with the double structure only in short regions under the electron microscope. It was also difficult to distinguish single bands in those regions where heavy adjacent bands were connected by dens, protrusions and anastomoses. These connections were most pronounced in the regions of the centromerers which had "spongy" appearance on the electron micrographs. These pictures may be connected with small interbands between heavy bands. Thin bands and some broad bands were frequently dotted. The puffs examined contained mainly RNP granules 200-400 A in diameter and RNP fibrils; BR-1 and BR-2 contained granules 500 A, RNP fibrils and smaller granules (200-400 A). BR and puffs were characterized by loop-like structures composed of granules arranged along the central DNP fibril. Only fibrils were presented in small interbands (0.05 mk), while larger interbands could include a small number of granules similar to those observed in puffs. It was found that centromere, telomeres and some heavy bands formed characteristic contacts with the nuclear membrane.  相似文献   

7.
RNA polymerase B (or II) was localized by immunoelectron microscopy in ultrathin sections of polytene chromosomes isolated from larval salivary glands of Chironomus tentans. The enzyme was found at decondensed sites (puffs and interbands), whereas no detectable RNA polymerase B was present in condensed loci (bands). Within each of the large puffs the highest enzyme concentration was observed wherever the chromatin was in the most decondensed state. Otherwise the enzyme appeared homogeneously distributed within puffs and interbands. This immunoelectron microscopic study, along with the recently published immunofluorescent and autoradiographic analysis of isolated Chironomus chromosomes (Sass, 1982) unequivocally demonstrates that RNA polymerase B is present in most, if not all interbands.  相似文献   

8.
This is a review summarizing work carried out at the Laboratory of Molecular Cytogenetics in recent years. Problems of genetic organization of bands, interbands and puffs as well as intercalary heterochromatin and position effect variegation are discussed from the point of view of the dynamic model of polytene chromosome organization.  相似文献   

9.
10.
This mini-review covers new data regarding the problem of the functional organization of polytene chromosomes: The localization of RNA synthesis in the polytene chromosome puffs, diffuse bands and interbands; The relative stability of banding pattern and its functional value; The informational content of bands.  相似文献   

11.
Incorporation of 3H-uridine into three chromosome regions 21D, 100AB, 7EF showing no puffs was studied by means of EM autoradiography. These regions show rather good coincidence between EM and Bridges' revised maps. The reduction of band number observed in the EM map was mainly at the expense of “doublet” bands. — Theoretical silver grain distributions were calculated on the basis of “universal curves” (Salpeter et al., 1969, J. Cell Biol. v. 41, 1–20) on condition that either bands or interbands are linear sources of radioactivity. From these curves the resolution of EM autoradiography was deduced to be sufficient with regard to the investigated region. — The results show that in addition to the puffs peaks of silver grains occur over the interbands and diffuse bands. The lowest incorporation level is observed over the dense bands. The possibility of utilizing the data obtained for the location of RNA-synthesising regions is discussed.  相似文献   

12.
A monoclonal antibody was raised against Drosophila melanogaster histone H1. Immunoscreening of proteolytic cleavage fragments of H1 and of a set of all possible overlapping synthetic octapeptides corresponding to the amino acid sequence of H1, revealed that the antibody recognizes an epitope within the sequence 207VTAAKPKA214 near the centre of the carboxy-terminal tail. This antibody gives positive immunofluorescence over the entire length of native D. melanogaster polytene chromosomes isolated from salivary glands by microdissection at physiological pH and ionic strength. Bands, interbands and puffs are all seen to contain H1. The immunofluorescence over puffs, albeit lower than that over bands and interbands, indicates that chromatin decondensation can occur without complete loss of H1 in these structures. The reaction of the antibody with bands suggests that the segment of the C-terminal tail containing the epitope may be exposed in the condensed 30 nm chromatin filament.  相似文献   

13.
14.
Marta Izquierdo 《Chromosoma》1994,103(3):193-197
Ubiquitin genes are found in Drosophila either as a repeat block or as gene fusions with ribosomal proteins. Here is described the location of a new repeat block in the X chromosome that is present in the strain Canton S but absent in Vallecas. There are also two ubiquitin-ribosomal protein fusion genes located at regions 97A of chromosome 3R and 31E of 2L. Using an anti-ubiquitin antibody in Drosophila polytene chromosomes it is shown that ubiquitin is mainly associated with the compact and stabilized structure that forms the bands rather than with the more decondensed and destabilized protein-DNA structure that forms interbands and puffs.  相似文献   

15.
Locations of Z-DNA in polytene chromosomes   总被引:9,自引:1,他引:8  
In polytene chromosomes of Drosophila hydei and D. melanogaster, Z-DNA was identified in varying distribution after different conditions for fixation were used. When salivary glands were fixed and squashed in 50% acetic acid alone, Z-DNA was found in the less dense DNA regions, such as interbands, some puffs, and a few of the less dense bands. Prefixation that combined ethanol and acetic acid exposure led to prominent immunofluorescent staining of the bands, generally but not strictly correlating with the total DNA content. Separate exposure to ethanol and acetic acid did not cause this band to stain, but if residual ethanol was present after ethanol fixation, subsequent exposure to acid did cause it. Under the more selective acid fixation conditions, Z-DNA reactivity was seen in portions of certain ecdysone-inducible puffs in the induced but not in the resting state; in other inducible regions, the Z-DNA immunoreactivity was not changed on induction. Z-DNA was also identified in polytene chromosomes within isolated nuclei that had been frozen and fixed in ethanol without exposure to acid; this Z-DNA was present in regions of low DNA density.  相似文献   

16.
Summary Morphological and metabolic changes on the salivary chromosomes of Sciara coprophila were followed during the later half of the fourth larval instar.Cytological maps were prepared for five successive stages from mid-fourth instar to the prepupal stage. These maps, which constitute a revision of those published earlier by Crouse, summarized our cytological findings and were the basis for studies on DNA replication of these chromosomes.Similar to earlier studies in Chironomidae, differences in the puffing pattern were noted between the anterior and the posterior portions of the salivary gland. The most striking difference was noted in region 2B on chromosome III which produces a large puff only in nuclei from the anterior part of the gland. Other autosomal puffs, although present in both parts of the gland, showed constant differences in size.An increase in the number of bands from mid-fourth to late fourth instar was observed. The new bands are all of the light-staining kind.In Sciara the puffed area may include a large number of bands in addition to the bands which originated the puff. The maximal extent of puffs was determined in terms of chromosomal map regions and the number of bands subject to obliteration.In the autoradiographic experiments use was made of H3-thymidine as DNA precursor. The aim of these studies was to detect any asynchronies in the replication time of bands. In fact, marked differences in the relative rates of uptake of H3-thymidine of a number of bands in a certain proportion of chromosomes have been observed, while others showed uniform incorporation. Since these latter were found with higher frequency the period of uniform labeling must comprise a larger part of the replication cycle then the periods of localized labeling. To assess the validity and constancy of the observed patterns of unequal incorporation, a semiquantitative analysis was carried out. It showed that the bands showing localized uptake may be separated into two broad groups. In one of these groups are the centromere regions and certain chromosomal ends, which are presumably heterochromatic. The other group comprises most of the puff sites and bulbs. Since late replication is characteristic of heterochromatin, we assumed that bands of the former group (C) replicate late in the cycle, while puffs and bulbs start replication early, and the period of equal labeling is intermediate. Other intermediate labeling patterns were observed and are described.It is known that in the fourth instar from two to three DNA replications occur in the salivary gland nuclei, the last of which coincides with puffing. Several stages may be distinguished in the puffing process based on morphology and rates of isotope uptake of the puffs. The first sign of puffing is a very high rate of incorporation at puffs. It is maintained throughout this last DNA synthesis period and only declines when all other chromosomal regions have ceased to replicate. A pattern of high and exclusive uptake at the heterochromatic sites (pattern C) was never observed in this replication; instead puffs are the last regions to terminate DNA synthesis.These results are discussed in relation to several current problems, such as, asynchronous DNA replication, the problem of metabolic DNA, and the concept of the heterochromatic state.Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, in the Faculty of Pure Science, Department of Zoology, Columbia University, New York. This work has been supported by U.S. Public Health Training Grant No. 2Tl-GM-216-05; partial support has been received also from Grants GB 42 and G-14043 from the National Science Foundation to Dr. H. V. Crouse.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号