首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicle deviation during bovine follicular waves is characterized by continued growth of a developing dominant follicle and reduction or cessation of growth of subordinate follicles. Characteristics of follicle deviation for waves with a single dominant follicle were compared between wave 1 (begins near ovulation; n = 15) and wave 2 (n = 15). Follicles were defined as F1 (largest), F2, and F3, according to maximum diameter. No mean differences were found between waves for follicle diameters at expected deviation (F1, > or =8.5 mm; Hour 0) or observed deviation or in the interval from follicle emergence at 4.0 mm to deviation. For both waves, circulating FSH continued to decrease (P < 0.05) after Hour 0, estradiol began to increase (P < 0.05) at Hour 0, and immunoreactive inhibin began to decrease (P < 0.05) before Hour 0. A transient elevation in circulating LH reached maximum concentration at Hour 0 (P < 0.01) in both waves and was more prominent (P < 0.0001) for wave 1. Waves with codominant follicles (both follicles >10 mm) were more common (P < 0.02) for wave 1 (35%) than for wave 2 (4%). Codominants (n = 6) were associated with more (P < 0.05) follicles > or=4 mm and a greater concentration (P < 0.04) of circulating estradiol at Hours -48 to -8 than were single dominant follicles (n = 15). A mean transient increase in FSH and LH occurred in the codominant group at Hour -24 and may have interfered with deviation of F2. In codominant waves, deviation of F3 occurred near Hour 0 (F1, approximately 8.5 mm). A second deviation involving F2 occurred in four of six waves a mean of 50 h after the F3 deviation and may have resulted from a greater suppression (P < 0.05) of FSH in the codominant group after Hour 0. In conclusion, follicle or hormone differences were similar for waves 1 and 2, indicating that the deviation mechanisms were the same for both waves. Waves that developed codominant follicles differed in hormone as well as follicle dynamics.  相似文献   

2.
This study compared serum and follicular fluid inhibin and gonadotropin profiles between chronic cystic ovarian diseased (CCOD) and normal cyclic dairy cows. Blood samples and follicular fluid were collected from CCOD cows (n=15) and cyclic cows in the follicular phase of the estrous cycle (control, n=6) and analyzed for inhibin, follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. There was a significant increase in inhibin and a decrease in FSH and LH concentrations in the follicular fluid of CCOD cows compared with those of cyclic cows (P < 0.05). Mean serum inhibin, FSH and LH concentrations between CCOD and cyclic cows were not differnt (P > 0.05), however, there was a tendency for serum inhibin to be higher and FSH to be lower in CCOD cows compared to cyclic animals (P < 0.1). The FSH pulse frequency also was lower in CCOD cows than in cyclic cows (P < 0.05). These data suggest that increased production of inhibin from cystic follicles of CCOD cows alters pituitary FSH secretion and subsequently reduces the concentration of FSH in follicular fluid. As a result, decreased FSH stimulation at the ovarian level could ultimately lead to the reduction in follicular LH and FSH receptor concentrations, resulting in abnormal follicular steroidogenesis in CCOD dairy cows.  相似文献   

3.
Changes in concentrations of bioactive and immunoreactive (ir-) inhibin, estradiol-17 beta, progesterone, LH, and FSH in peripheral blood were determined in cows induced to superovulate with eCG. The pattern of follicular growth was also characterized by daily ultrasonographic examination. Hormonal profiles and follicular development during the intact estrous cycle of the same animals before eCG treatment served as controls. Equine CG increased the number of follicles of various sizes (small, greater than or equal to 4 less than 7, medium, greater than or equal to 7 less than 10; large, greater than or equal to 10 mm in diameter) by 4 days after administration. The second growth of large follicles occurred within 1 day after superovulation. Inhibin bioactivity in jugular vein blood was detectable 48 h after eCG injection (44 h before LH peak), whereas it was not detected before administration of eCG or during control cycles. Circulating levels of bioactive inhibin further increased during the two waves of growth of large follicles. The highest activity of inhibin was noted at the time of the preovulatory LH peak (0 h). Thereafter, bioactivity of inhibin in peripheral plasma dropped from 0 to 24 h after the LH peak, and the activity increased again at 72 h compared to the value at -44 h. Plasma levels of ir-inhibin showed a pattern similar to changes in bioactive inhibin in the eCG-treated cows. Plasma concentrations of estradiol-17 beta also increased concomitantly with two waves of growth of large follicles. There was no correlation between plasma levels of progesterone and inhibin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The increase in LH concentrations at the time of the decrease in FSH concentrations during follicle deviation in mares was studied to determine the role of LH in the production of estradiol and immunoreactive inhibin (ir-inhibin). Ten days after ovulation, all follicles > or =6 mm were ablated, prostaglandin F(2 alpha) was given, and either 0 mg (control group, n = 15) or 100 mg of progesterone in safflower oil (treated group, n = 16) was given daily for 14 days, encompassing the day of diameter deviation. The follicular and hormonal data were normalized to the expected day of the beginning of diameter deviation when the largest follicle first reached > or =20 mm (Day 0). The experimentally induced decrease in LH concentrations during follicle deviation beginning on Day -4 delayed and stunted the increase in circulating concentrations of ir-inhibin and estradiol beginning on Days -3 and -1, respectively, but did not alter the predeviation FSH surge and the initiation of diameter deviation between the two largest follicles. Combined for both groups, the interval to the expected day of deviation was 16.6 days after ovulation when the largest follicle was a mean of 21.6 mm. After deviation, the largest follicle started to regress in the treated group beginning on Day 1 and was associated with decreased concentrations of ir-inhibin and estradiol, and increased concentrations of FSH. The negative influence of the dominant follicle on the postdeviation decrease in FSH observed in the control group was alleviated and concentrations resurged in the treated group. Apparently this is the first in vivo evidence that the increase in LH that precedes follicle deviation has a positive effect in supporting the production of inhibin during diameter deviation. It was concluded that the increase in LH concentrations before diameter deviation played a role in the production of estradiol and inhibin by the largest follicle during deviation.  相似文献   

5.
Selection of dominant follicles in cattle is associated with a deviation in growth rate between the dominant and largest subordinate follicle of a wave (diameter deviation). To determine whether acquisition of ovulatory capacity is temporally associated with diameter deviation, cows were challenged with purified LH at known times after a GnRH-induced LH surge (experiment 1) or at known follicular diameters (experiments 2 and 3). A 4-mg dose of LH induced ovulation in all cows when the largest follicle was > or =12 mm (16 of 16), in 17% (1 of 6) when it was 11 mm, and no ovulation when it was < or =10 mm (0 of 19). To determine the effect of LH dose on ovulatory capacity, follicular dynamics were monitored every 12 h, and cows received either 4 or 24 mg of LH when the largest follicle first achieved 10 mm in diameter (experiment 2). The proportion of cows ovulating was greater (P < 0.05) for the 24-mg (9 of 13; 69.2%) compared with the 4-mg (1 of 13; 7.7%) LH dose. To determine the effect of a higher LH dose on follicles near diameter deviation, follicular dynamics were monitored every 8 h, and cows received 40 mg of LH when the largest follicle first achieved 7.0, 8.5, or 10.0 mm (experiment 3). No cows with a follicle of 7 mm (0 of 9) or 8.5 mm (0 of 9) ovulated, compared with 80% (8 of 10) of cows with 10-mm follicles. Thus, follicles acquired ovulatory capacity at about 10 mm, corresponding to about 1 day after the start of follicular deviation, but they required a greater LH dose to induce ovulation compared with larger follicles. We speculate that acquisition of ovulatory capacity may involve an increased expression of LH receptors on granulosa cells of the dominant follicle and that this change may also be important for further growth of the dominant follicle.  相似文献   

6.
We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F(2alpha)-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF(2alpha)-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20-45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 +/- 0.13 to 0.97 +/- 0.09 pulses/h during the experiment, significantly (P < 0.05) higher than that in the midluteal phase of the control cows (0.23 +/- 0.07). The mean LH concentration in the immunized cows was also generally higher than that in the luteal phase of the control cows. However, the LH pulse and mean concentration of LH after immunization were similar to those in the follicular phase of the control cows. Plasma concentrations of total inhibin increased (P < 0.01) concomitant with the emergence of cystic follicles and remained high during the growth of cystic follicles, whereas FSH concentrations were inversely correlated with total inhibin concentrations. In conclusion, neutralization of endogenous estradiol resulted in suppression of the preovulatory LH surge but a normal range of basal LH secretion, and this circumstance led to an anovulatory situation similar to that observed with naturally occurring follicular cysts. These findings provide evidence that lack of LH surge because of dysfunction in the positive-feedback regulation of LH secretion by estradiol can be the initial factor inducing formation of follicular cysts.  相似文献   

7.
Donadeu FX  Ginther OJ 《Theriogenology》2004,61(7-8):1395-1405
The changes in circulating concentrations of FSH, LH, estradiol, and total inhibin associated with the beginning of follicle diameter deviation were compared among the last anovulatory follicular wave of the year and the first and second ovulatory waves in pony mares ( n=7 ). Follicle diameters and circulating hormone concentrations for each wave were normalized to the observed beginning of deviation (Day 0). Follicle deviation was demonstrated during the anovulatory wave as well as during the ovulatory waves, and the diameter of the future dominant follicle at the beginning of deviation was similar for the three waves (overall mean: 23.7+/-0.6 mm). Circulating estradiol concentrations did not increase during the last anovulatory wave but increased similarly for the two ovulatory waves, beginning near the onset of deviation. There were no differences among waves in concentrations of inhibin encompassing deviation. The FSH concentrations for the wave-stimulating FSH surge did not differ significantly among the three waves; combined for the three waves, concentrations decreased between Days -3 and 7. Circulating LH did not increase during the last anovulatory wave but increased during the first and second ovulatory waves beginning on Days 6 and -2, respectively. Results indicated that the increase in circulating estradiol at the beginning of deviation was not required for suppression of the wave-stimulating FSH surge and the initiation of deviation, based on an estradiol increase in association with deviation during the ovulatory waves but not during the anovulatory wave. Concentrations of inhibin were similar among waves and, therefore on a temporal basis, the similar suppression of FSH was attributable to inhibin. The later increase in LH before the first ovulation was not attributable to estradiol, based on the similarity between the two ovulatory waves in the increasing estradiol concentrations.  相似文献   

8.
The aim of this study was to characterize the immediate effects of heat stress on plasma FSH and inhibin concentrations, and its involvement in follicular dynamics during a complete oestrous cycle, and to examine a possible delayed effect of heat stress on follicular development. Holstein dairy cows were oestrous synchronized and randomly assigned to either cooled (n = 7) or heat-stressed (n = 6) treatment groups. During a complete oestrous cycle, control cows, which were cooled, maintained normothermia, whereas heat-stressed cows, which were exposed to direct solar radiation, developed hyperthermia. At the end of this oestrous cycle (treated cycle), both groups were cooled and maintained normothermia for the first 10 days of the subsequent oestrous cycle. Throughout this period, follicular development was examined by ultrasonography, and plasma samples were collected. During the second follicular wave of the treated oestrous cycle, a significantly larger cohort of medium sized follicles (6-9 mm) was found in heat-stressed cows than in cooled cows (P < 0.05). The enhanced growth of follicles in this wave in heat-stressed cows was associated with a higher plasma FSH increase which lasted 4 more days (days 8-13 of the oestrous cycle; P < 0.05), and coincided with a decrease in the plasma concentration of immunoreactive inhibin (days 5-18 of the oestrous cycle; P < 0.05). During the follicular phase (days 17-20 of the treated cycle), heat-stressed cows showed an increase in the number of large follicles (>/= 10 mm), and the preovulatory plasma FSH surge was significantly higher in heat-stressed cows than in cooled cows (P < 0.01). The effect of heat stress was also observed during the first follicular wave of the subsequent cycle: the postovulatory plasma FSH concentration was higher (P < 0.01), but fewer medium follicles developed, and the first follicular wave decreased at a slower rate in previously heat-stressed cows than in cooled cows (0.40 and 0.71 follicles per day, respectively). This study shows both immediate and delayed effects of heat stress on follicular dynamics, which were associated with high FSH and low inhibin concentrations in plasma. These alterations may have physiological significance that could be associated with low fertility of cattle during the summer and autumn.  相似文献   

9.
A near steroid-free fraction of bovine follicular fluid was used to suppress FSH concentrations at the expected time of follicle deviation or when the largest follicle of Wave 1 reached > or = 8.0 mm (actual mean diameter, 8.4 mm; Hour 0). It was hypothesized that the low concentrations of FSH associated with deviation are inadequate for the smaller follicles but are needed for continued growth of the largest follicle. Control heifers (n=8) received 10 mL of saline, and treated heifers (n=16) received either 8.8 mL or 13.3 mL of the follicular-fluid fraction at Hours 0, 12, and 24. Between Hours -48 and 0, FSH concentrations decreased (P<0.05) and diameters of the 4 largest follicles increased (Hour effect, P<0.0001) similarly between groups. Concentrations of LH in the controls increased (P<0.05) between Hours -24 and -12 and decreased (P<0.05) between Hours 8 and 36, demonstrating a transient LH surge encompassing the expected beginning of deviation. In the treated group, a comparable increase in LH occurred before deviation but a decrease did not occur until after Hour 48. By Hour 4.5, the FSH concentrations in the treated group decreased (P<0.05) to below the concentrations in the controls. Suppressed diameter (P<0.001) of the largest follicle was detected at the first post-treatment examination (Hour 12; 7.5 h after FSH suppression) and was accompanied by reduced (P<0.04) systemic estradiol concentrations. The mean growth rates of the 3 smaller follicles in both the treated and control groups began to decrease at Hours -12 to 24 and were not different between groups during Hours 0 to 36. Concentrations of FSH in the treated group returned to control concentrations by Hour 24 (hour of last treatment). A rebound (P<0.05) in concentrations of FSH to >100% above control concentrations occurred by Hour 48 and was accompanied by resumed growth of the largest follicle in 75% of the heifers between Hours 48 and 72. The results demonstrated that the low concentrations of FSH associated with deviation can be further reduced by treatment with a nonsteroidal factor of follicular origin. Transient reduction of FSH concentrations to below the already low control concentrations inhibited the largest follicle but did not further inhibit the smaller follicles. These results support the hypothesis that the low FSH concentrations associated with follicle deviation are below the minimal requirements of the smaller or subordinate follicles but are needed for continued growth of the largest or dominant follicle in cattle.  相似文献   

10.
Changes in plasma and follicular fluid concentrations of inhibin were examined in sows after weaning at 28-32 days post partum. From 0 to 48 h after weaning, inhibin concentrations were 200-300 times higher in follicular fluid from small (less than 4 mm) and medium-large (greater than or equal to 4 mm) follicles than in ovarian venous plasma. Inhibin concentrations increased in follicular fluid from medium-large follicles at 24 and 48 h after weaning; concentrations in ovarian venous plasma were positively correlated with the number of medium-large follicles (r = 0.40) and with ovarian venous plasma concentrations of oestradiol (r = 0.61). Blood samples were collected for 30 days from sows (n = 6) that exhibited oestrus within 5 days after weaning and from sows (n = 5) that remained anoestrous for 11 days after weaning. Plasma inhibin concentrations rose in oestrous and anoestrous sows by 12 h and continued to rise for 60 h after weaning. Plasma inhibin concentrations rose further and were higher at 3.5-4.5 days after weaning in oestrous sows than in sows that remained anoestrous. After oestrus, plasma inhibin concentrations declined. At weaning, plasma concentrations of follicle-stimulating hormone (FSH) were higher in sows that subsequently exhibited oestrus than in sows that remained anoestrous. After weaning, plasma concentrations of FSH declined in both groups, reached a nadir at 2.5 days, and increased gradually in anoestrous sows; oestrous sows exhibited an FSH surge at oestrus. Plasma FSH returned to preweaning concentrations in both groups of sows at Days 7-8.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During the preovulatory period in heifers that ovulate from two compared to one follicle, circulating concentrations of estradiol-17β (E2) are greater, diameter of follicles and concentration of FSH are reduced, and the LH surge occurs sooner. The effect of increased E2 on the reported characteristics of double ovulation was studied by treating heifers with 0.07 mg E2, 0.09 mg E2, or vehicle in four treatments at 6-h intervals (n=6 heifers/group), beginning at the time of expected follicle deviation (largest follicle, 8.5mm). There were no significant differences on follicle diameters or hormone concentrations between the 0.07 and 0.09 mg E2 groups, and heifers were combined into one E2 group (n=12). The E2 treatments induced concomitant preovulatory surges in LH and FSH at 34.0 ± 2.6h after first treatment, compared to 57.6 ± 4.5h in the vehicle group (P<0.0002). The E2 treatments did not affect FSH concentrations during the preovulatory gonadotropin surge. The diameter of the preovulatory follicle at the LH peak was smaller (P<0.0001) in the E2-treated group (10.2 ± 0.2mm) than in the vehicle group (13.1 ± 0.6mm). The hypothesis was not supported that the previously reported increase in circulating E2 in heifers with double preovulatory follicles accounts for the reported lesser concentrations in the preovulatory FSH surge in heifers with double ovulations. Hypotheses were supported that the reported earlier occurrence of the preovulatory LH surge and smaller preovulatory follicles in heifers with double ovulations are attributable to the reported increase in E2 from the double preovulatory follicles.  相似文献   

12.
A few days after the first follicular wave emerges as 4-mm follicles, follicular deviation occurs wherein 1 follicle of the wave continues to grow (dominant follicle) while the others regress. The objectives of this study were to characterize follicle growth and associated changes in systemic concentrations of gonadotropins and estradiol at 8-h intervals encompassing the time of follicle deviation. Blood samples from heifers (n = 11) were collected and the ovaries scanned by ultrasound every 8 h from 48 h before to 112 h after the maximal value for the preovulatory LH surge. The follicular wave emerged at 5.8 +/- 5.5 h (mean +/- SEM) after the LH surge, and at this time the future dominant follicle (4.2 +/- 0.8 mm) was larger (P < 0.001) than the future largest subordinate follicle (3.6 +/- 0.1 mm). There was no difference in growth rates between the 2 follicles from emergence to the beginning of the deviation (0.5 mm/8 h for each follicle), indicating that, on average, the future dominant follicle maintained a size advantage over the future subordinate follicle. Deviation occurred when the 2 largest follicles were 8.3 +/- 0.2 and 7.8 +/- 0.2 mm in diameter, at 61.0 +/- 3.7 h after wave emergence. Diameter deviation was manifested between 2 adjacent examinations at 8-h intervals. Mean concentrations of FSH decreased, while mean concentrations of LH increased 24 and 32 h before deviation, respectively, and remained constant (no significant differences) for several 8-h intervals encompassing deviation. In addition to the increase and decrease in circulating estradiol concentrations associated with the preovulatory LH surge, an increase (P < 0.05) occurred between the beginning of deviation and 32 h after deviation. The results supported the hypotheses that deviation occurs rapidly (within 8 h), that elevated systemic LH concentrations are present during deviation, and that deviation is not preceded by an increase in systemic estradiol.  相似文献   

13.
The aims of this study were to develop a sensitive and specific assay for bovine inhibin A using europium and to investigate the endocrine role of inhibin A in various reproductive conditions by characterizing the relationship between profiles of inhibin A, FSH, and estradiol and follicle growth during the postpartum period, during the intact estrous cycle, and in cows with follicular cysts. The time-resolved immunofluorometric assay (Tr-IFMA) for bovine inhibin A, using purified polyclonal antibodies to alpha and beta(A) subunits, was specific for bovine inhibin A and did not cross-react with bovine activin A, activin AB, activin B, pro-alphaC or human recombinant inhibin B. The detection limit of the IFMA was 3.3 pg/ml expressed in terms of bovine 32-kDa inhibin A. Dose-response curves of plasma samples obtained from intact and FSH-stimulated cows and cystic cows were parallel to the standard without any preassay processing of samples. Plasma inhibin A levels increased (P < 0.01) concomitant with emergence of nonovulatory or ovulatory follicular waves during the postpartum period. In cystic cows, plasma inhibin A was sustained at high levels for a longer period, associated with growth of persistent dominant follicles. The highest levels of inhibin A were noted during the growth phase of normal and persistent dominant follicles; however, inhibin A levels declined (P < 0.01) as these dominant follicles ceased to grow or ovulated. An inverse relationship between patterns of plasma inhibin A and FSH existed during each follicular wave in the three physiologic conditions. Increases in plasma inhibin A levels were associated with increases in plasma estradiol levels during most follicular waves; however, there was no increase in plasma estradiol level and no relationship between patterns of estradiol and FSH during follicular waves observed during the early postpartum period or midluteal phase of the estrous cycle. In conclusion, the Tr-IFMA does not require pretreatment of samples and can be used for precise measurement of bovine inhibin A without interference with free inhibin alpha subunits. Inhibin A, produced primarily during growth of the dominant follicle, functions as a negative feedback regulator for FSH secretion throughout the postpartum period and the estrous cycle, whereas estradiol appears to have a minor role in regulation of FSH compared with inhibin A, especially during the early postpartum period and midluteal phase of the estrous cycle. The results also indicate that a persistent dominant follicle sustains inhibin A production for a longer period than the dominant follicle emerging in the estrous cycle and establishes long-term dominance by suppressing emergence of a new follicular wave.  相似文献   

14.
Twenty-four Scottish Blackface ewes (mean weight 50.0 +/- 0.1 kg with ovulation rate 1.3 +/- 0.1) were randomly divided into 4 groups of 6 animals. Under general anesthesia, following the collection of a timed sample of ovarian venous blood, the ovaries of these animals were collected either on Day 10 of the luteal phase or 12, 24, and 48 h after a luteolytic dose of a prostaglandin (PG) F2 alpha analogue (cloprostenol 100 micrograms i.m.) administered on Day 10. All follicles greater than 3 mm were dissected from the ovaries and incubated in Medium 199 (M199) at 37 degrees C for 2 h, following which the granulosa cells were harvested and incubated in triplicate for 24 h in M199 with or without ovine FSH or ovine LH. Plasma and culture media samples were assayed for inhibin, estradiol (E2), androstenedione (A4), and testosterone (T) by specific RIA. After correcting for hematocrit, ovarian secretion rates were calculated from the product of the plasma concentration and flow rate. The rate of ovarian inhibin secretion during the luteal phase was similar from ovaries categorized on the basis of presence of luteal tissue (1.0 +/- 0.3 and 0.9 +/- 0.5 ng/min for CL present and absent, respectively), confirming that the ovine CL does not secrete appreciable amounts of inhibin. Inhibin secretion was higher (p less than 0.05) at 12 h after PG-induced luteolysis but not at 24 or 48 h compared to values for luteal phase control ewes. Although ovaries containing large estrogenic follicles (greater than or equal to 4 mm in diameter and classified as estrogenic from in vitro criteria) secreted the most inhibin (55%; p less than 0.05), both ovaries containing large nonestrogenic follicles (33%) and small (11%; less than 4 mm in diameter) follicles secreted appreciable amounts of inhibin. This contrasted strongly with E2 where greater than 80% of the steroid was secreted by large estrogenic follicles. The rate of ovarian inhibin secretion was positively correlated (p less than 0.05) with the rate of E2, A4, and T secretion. Overall, there was no significant effect of stage of cycle on follicular inhibin content after 2 h incubation in vitro, release of inhibin by follicles incubated in vitro, or synthesis of inhibin by granulosa cells cultured in vitro. FSH and LH had no effect on the production of either inhibin or estradiol by cultured granulosa cells. Follicular diameter was positively correlated (p less than 0.001) with follicular inhibin and steroid release. Follicular inhibin content after 2 h incubation in vitro was more highly correlated with inhibin release by incubated follicles (r = 0.7; p less than 0.001) than with inhibin synthesis by granulosa cells in vitro (0.4; p less than 0.01).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Donadeu FX  Ginther OJ 《Theriogenology》2003,60(8):1423-1434
The role of estradiol and inhibin in suppression of FSH and LH during the initiation of follicle deviation was examined in mares. In Experiment 1, the two largest follicles (F1, F2) were retained during a wave and the rest were ablated as they reached > or =10 mm. The largest follicle was left intact (control, n=12) or was ablated when it reached > or =20.0 mm (Day 0; expected beginning of deviation). The second largest follicle continued growing (n=9) or regressed (n=4) after F1 ablation. Circulating estradiol and total inhibin decreased after Day 0 in the F2-regressing group, whereas estradiol increased after Day 0.5 and inhibin was unaltered in the control and F2-growing groups. Circulating FSH decreased in the control group and increased in the F2-regressing group after Day 0. In the F2-growing group, FSH increased between Days 0 and 0.5 and then decreased. Circulating LH increased between Days 0 and 2 in the F2-regressing group and between Days 0 and 0.5 in the F2-growing group. In Experiment 2, 0 or 1 follicle was retained in a wave followed by administration of 0 or 1 mg of estradiol at the expected beginning of deviation (Hour 0; 2 x 2 factorial design, n=4-6/group). Circulating total inhibin was higher and FSH was lower at Hour 0 in the 1-follicle than in the 0-follicle groups. Follicle-stimulating hormone decreased after Hour 0 in the 1-mg but not in the 0-mg groups, and the decrease in the 0-follicle/1-mg group was not to the level of that in the 1-follicle/1-mg group. Circulating LH was not affected by follicle number but was reduced by estradiol. Results supported the hypotheses that F1 near the beginning of deviation produces inhibin and estradiol and that the increase in circulating estradiol at the beginning of deviation induces FSH suppression in combination with other follicle substances (presumably inhibin). Results also indicated that the increase in estradiol induces suppression of LH.  相似文献   

16.
The responsiveness of the hypothalamo-pituitary axis to steroid treatments for ovarian synchronization and the ovarian superstimulatory response to exogenous FSH was compared in 13-14 year old cows and their 1-4 year old young daughters. We tested the hypotheses that aging in cattle is associated with: (1) decreased follicular wave synchrony after estradiol and progesterone treatment; (2) delayed LH surge and ovulation in response to exogenous preovulatory estradiol treatment; (3) reduced superstimulatory response to exogenous FSH. Higher plasma FSH concentrations (P<0.01), and a tendency (P=0.07) for fewer 4-5 mm follicles at wave emergence were observed in old cows (n=10) than in young cows (n=9). The suppressive effect of estradiol/progesterone treatment on FSH was similar between old and young cows. Although the preovulatory LH surge in response to estradiol treatment was delayed in old than young cows (P=0.01), detected ovulation times were not different. No difference in ovarian superstimulatory response was detected between age groups, but old cows (n=8) tended (P=0.10) to have fewer large follicles (>or=9 mm) 12 h after last FSH treatment than in young cows (n=7). We concluded that pituitary and ovarian responsiveness to estradiol/progesterone synchronization treatment was similar between old and young cows, but aging was associated with a delayed preovulatory LH surge subsequent to estradiol treatment. Old cows tended to have fewer large follicles after superstimulatory treatment than young cows.  相似文献   

17.
The objective of this study was to determine the efficacy of a progesterone-releasing intravaginal silastic device (Controlled Internal Drug Release: CIDR) for inducing ovulation in beef cows with persistent ovarian cysts. Fifteen cows with cysts and abnormal cycles for over 40 days were randomly assigned to receive either a single CIDR (CIDR group, n=9), or a CIDR containing no progesterone (blank CIDR) (BLANK group, n=6) for about 14 days. Determination of plasma progesterone levels at the beginning of CIDR treatment indicated 4 of 6 BLANK cows with non-luteinized cysts and 5 of 9 CIDR cows with non-luteinized cysts. In 5 of 6 BLANK cows, one follicular wave appeared and newly emerged dominant follicles increased in size up to 20 mm in diameter and persisted during the experiment, while one cow experienced estrus with spontaneous ovulation. In contrast, during CIDR treatment, 2 or 3 waves, in which dominant follicles were from 7 to 15 mm in diameter, appeared approximately at 7-day intervals. Within 3 days after CIDR removal, estrous behavior was detected followed by ovulation of the dominant follicle in the last wave. All CIDR cows resumed normal cyclicity with 2 follicular waves for over 2 months. Insertion of a CIDR caused a rapid increase of about 2 ng/mL in plasma progesterone. The levels were greater than 1.3 ng/mL until removal of a CIDR, then dropped under 0.3 ng/mL. Concentrations of plasma estradiol in BLANK cows increased during growth of the cystic follicles, with high levels greater than 10 pg/mL for over 10 days. In 4 of 5 cows with non-luteinized cysts, with high plasma estradiol on the day of CIDR insertion, CIDR treatment resulted in rapid decline of estradiol levels. During placement of the CIDR, estradiol levels showed no increase in the growth phase of a newly appeared dominant follicle. After CIDR removal, however, estradiol significantly increased associated with the growth of ovulatory follicles in all 9 cows. A transient increase in plasma FSH levels preceded detection of each follicular or cyst wave in both BLANK and CIDR cows. Pulse frequency and mean concentration of LH in cows with non-luteinized cysts showed values corresponding to those in normal follicular phase. However, throughout CIDR treatment, these parameters reduced to levels found in the normal luteal phase. In cows with luteinized cysts, parameters of LH secretion were as low as in the normal luteal phase before and during CIDR treatment, then increased significantly after CIDR removal. Present results indicate that treatment with CIDR proved effective in restoring ovulation and reestablishing normal cyclicity in beef donor cows with cysts persistent for a long period. The CIDR reduced and maintained LH secretion at normal luteal levels, thereby, inducing atresia of estrogen-active cysts and preventing formation of cysts from the newly emerged follicles.  相似文献   

18.
Follicles collected from cows destined to enter relatively normal or short luteal phases if induced to ovulate were compared for numbers of receptors for luteinizing hormone (LH) in granulosal and thecal cells and for follicle-stimulating hormone (FSH) in granulosal cells. Eleven suckled beef cows received ear implants of 6 mg norgestomet for 9 days (expected normal luteal phase) and 11 served as controls (expected short luteal phase). At 48 h after implants were removed (average 34 days postpartum), the ovary containing the largest follicle was identified by transrectal ultrasound and removed. The largest follicle was dissected free of surrounding ovarian stroma and frozen in liquid nitrogen. Thecal and granulosal cells were isolated, and numbers of receptors for LH and FSH in granulosal cells and for LH in thecal cells were quantified. Concentrations of estradiol were measured in follicular fluid. Both granulosal and thecal cells from norgestomet-treated cows had greater numbers of receptors for LH than did those from control cows (p less than 0.01). Numbers of receptors for FSH in granulosal cells did not differ between treated and control cows. Follicles from norgestomet-treated cows were heavier (p less than 0.01) than follicles from control cows, mostly due to greater amounts of follicular fluid (p less than 0.01). Concentrations of estradiol were higher in follicular fluid from the treated cows (p less than 0.05). It is suggested that increases in numbers of follicular receptors for LH and secretion of estradiol are integral components of a sequence of events by which norgestomet prepares follicles to become fully functional corpora lutea.  相似文献   

19.
Patterns of ovarian follicle development were monitored daily in Holstein-Friesian cows that had two (n = 4) or three (n = 4) waves of ovarian follicle development during a single estrous cycle. The plasma from daily blood samples was used in assays for inhibin A, FSH, progesterone, and estradiol-17beta. Mean cycle lengths for cows with two and three waves were 21.8 and 25.3 days, respectively (P < 0.02). Although the average number of follicles >3-mm diameter on each pair of ovaries was similar for two- and three-wave cows on Days 2, 3, and 4 (Day 0 = day of ovulation; 8.6 vs. 9.6 follicles), there were more follicles >6-mm diameter on the ovaries of cows with two waves on Days 3 and 4. This difference was associated with a shorter interval from wave emergence to peak concentrations of inhibin A during the first wave in two-wave cows (2.0 vs. 3.8 days; P = 0.03) and with higher peak concentrations (474 vs. 332 pg/ml; P = 0.03). Differences in peak FSH concentrations were not significant (1.7 vs. 1.3 ng/ml; P = 0.10) and were inversely related to inhibin A concentrations. The peak concentrations of inhibin A and FSH in the second nonovulatory wave in the three-wave cows were similar to the low concentrations measured in the first wave (292 vs. 332 pg/ml of inhibin A, 1.3 vs. 1.3 ng/ml of FSH; P > 0.20). Average peak concentrations of inhibin A and FSH were similar during the ovulatory wave for cows with either two or three waves in a cycle (432 vs. 464 pg/ml of inhibin A, 2.3 vs. 2.1 ng/ml of FSH; P > 0.3). The lower concentrations of FSH during the emergence of the first follicular wave in cows with three-wave cycles may have reduced the rate of development of some of the follicles and reduced the concentrations of inhibin A. This pattern of lower concentrations of FSH and inhibin A was repeated in the second nonovulatory wave but not in the ovulatory wave. Subtle differences in the concentrations of these two hormones may underlie the mechanism that influences the number of waves of ovarian follicle development that occur during the bovine estrous cycle.  相似文献   

20.
The objective was to study the endocrine activity in sheep with large ovarian follicles and the effects of dominant follicles on other follicles, looking for possible intraovarian differences. Induction of dominant follicles was achieved using controlled exogenous LH pulses every 90 min over 14 days in eight Scottish Blackface ewes. During this period, follicular development was assessed by daily transrectal ultrasonography and jugular venous blood samples were collected every 12 h for FSH, LH inhibin and oestradiol assay. The exogenous LH pulses caused the appearance of large follicles in all the ewes, which reached a maximum mean diameter of 7.2 +/- 0.5 mm on Day 5.5 +/- 2.6 after first detection. In the presence of a dominant follicle, no other follicle grew to a diameter larger than 4 mm and there was a decrease in the number of new growing follicles (P < 0.05) and in the number of smaller follicles (P < 0.01). This effect of dominance was mediated by changes in FSH concentration, since FSH level decreased (P < 0.05) as dominant follicles grew and the decrease in FSH levels was related to a decline in the number of remaining follicles (P < 0.05). However, the greatest decrease in the number of small follicles growing to larger sizes was observed in the ovary ipsilateral to the dominant follicle (P < 0.05). These data confirm that the presence of a large follicle depresses the recruitment and growth of other follicles by systemic factors and provide some evidence of local inhibitors blocking the final development of other putative large follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号