首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
S Cutting  V Oke  A Driks  R Losick  S Lu  L Kroos 《Cell》1990,62(2):239-250
Gene expression in the mother cell compartment of sporulating cells of B. subtilis is partly governed by the mother cell RNA polymerase sigma factor sigma K. Paradoxically, sigma K-directed gene expression also depends on sigma G, the product of the forespore compartment regulatory gene spoIIIG, and on other forespore regulatory proteins. We now identify mutations in the genes bofA and bofB that relieve the dependence of mother cell gene expression on forespore regulatory proteins but not on sigma K. We establish that the dependence of mother cell gene expression on the forespore regulatory proteins is mediated at the level of the conversion of pro-sigma K to its mature, active form. We propose that the bofA and/or bofB proteins govern this conversion in response to a signal generated by the forespore. Activation of pro-sigma K could be a checkpoint for coordinating gene expression between the mother cell and forespore compartments of the developing sporangium.  相似文献   

4.
Endospore formation by Bacillus subtilis involves three differentiating cell types, the predivisional cell, the mother cell, and the forespore. Here we report the program of gene expression in the forespore, which is governed by the RNA polymerase sigma factors sigma(F) and sigma(G) and the DNA-binding proteins RsfA and SpoVT. The sigma(F) factor turns on about 48 genes, including the gene for RsfA, which represses a gene in the sigma(F) regulon, and the gene for sigma(G). The sigma(G) factor newly activates 81 genes, including the gene for SpoVT, which turns on (in nine cases) or stimulates (in 11 cases) the expression of 20 genes that had been turned on by sigma(G) and represses the expression of 27 others. The forespore line of gene expression consists of many genes that contribute to morphogenesis and to the resistance and germination properties of the spore but few that have metabolic functions. Comparative genomics reveals a core of genes in the sigma(F) and sigma(G) regulons that are widely conserved among endospore-forming species but are absent from closely related, but non-spore-forming Listeria spp. Two such partially conserved genes (ykoU and ykoV), which are members of the sigma(G) regulon, are shown to confer dry-heat resistance to dormant spores. The ykoV gene product, a homolog of the non-homologous end-joining protein Ku, is shown to associate with the nucleoid during germination. Extending earlier work on gene expression in the predivisional cell and the mother cell, we present an integrated overview of the entire program of sporulation gene expression.  相似文献   

5.
6.
7.
Sporulation in Bacillus subtilis begins with an asymmetric cell division giving rise to smaller forespore and larger mother cell compartments. Different programs of gene expression are subsequently directed by compartment-specific RNA polymerase sigma-factors. In the final stages, spore coat proteins are synthesized in the mother cell under the control of RNA polymerase containing sigma(K), (Esigma(K)). sigma(K) is synthesized as an inactive zymogen, pro-sigma(K), which is activated by proteolytic cleavage. Processing of pro-sigma(K) is performed by SpoIVFB, a metalloprotease that resides in a complex with SpoIVFA and bypass of forespore (Bof)A in the outer forespore membrane. Ensuring coordination of events taking place in the two compartments, pro-sigma(K) processing in the mother cell is delayed until appropriate signals are received from the forespore. Cell-cell signaling is mediated by SpoIVB and BofC, which are expressed in the forespore and secreted to the intercompartmental space where they regulate pro-sigma(K) processing by mechanisms that are not yet fully understood. Here we present the three-dimensional structure of BofC determined by solution state NMR. BofC is a monomer made up of two domains. The N-terminal domain, containing a four-stranded beta-sheet onto one face of which an alpha-helix is packed, closely resembles the third immunoglobulin-binding domain of protein G from Streptococcus. The C-terminal domain contains a three-stranded beta-sheet and three alpha-helices in a novel domain topology. The sequence connecting the domains contains a conserved DISP motif to which mutations that affect BofC activity map. Possible roles for BofC in the sigma(K) checkpoint are discussed in the light of sequence and structure comparisons.  相似文献   

8.
We have adapted immunofluorescence microscopy for use in Bacillus subtilis and have employed this procedure for visualizing cell-specific gene expression at early to intermediate stages of sporulation. Sporangia were doubly stained with propidium iodide to visualize the forespore and mother cell nucleoids and with fluorescein-conjugated antibodies to visualize the location of beta-galactosidase produced under the control of the sporulation RNA polymerase sigma factors sigma E and sigma F. In confirmation and extension of earlier reports, we found that expression of a lacZ fusion under the control of sigma E was confined to the mother cell compartment of sporangia at the septation (II) and engulfment (III) stages of morphogenesis. Conversely, sigma F-directed gene expression was confined to the forespore compartment of sporangia at postseptation stages of development. Little indication was found for sigma E- or sigma F-directed gene expression prior to septation or in both compartments of postseptation sporangia. Gene expression under the control of the forespore sigma factor sigma G also exhibited a high level of compartmentalization. A high proportion of sporangia exhibited fluorescence in our immunostaining protocol, which should be suitable for the subcellular localization of sporulation proteins for which specific antibodies are available.  相似文献   

9.
Bacillus subtilis sporulating cells at stage III were fractionated into mother cell and forespore fractions by means of a lysozyme-detergent method. Three forms of DNA-dependent RNA polymerase enzymes, termed M sigma, F sigma, and F delta, in addition to core enzyme (alpha 2, beta', and beta) have been purified from the cell fractions. Enzymes M sigma and F sigma are present in the mother cell and forespore, respectively, and contain sigma factor of 55,000 daltons in addition to the core subunits. On the other hand, enzyme F delta is present specifically in the forespore and contains delta 1 factor of 28,000 daltons instead of the sigma factor. The amount of RNA polymerase in the forespore is about twice that in the mother cell. The enzymes M sigma and F sigma also differed in their elution profiled from DEAE-cellulose columns and in their heat stabilities indicating that the two sigma-containing holoenzyme forms may be different in their structural properties. The enzyme F delta transcribed B. subtilis DNA about 1.6 times more actively than enzyme F sigma, and the enzymes M sigma and F sigma transcribed the DNA about 2.2 times more actively than did core enzyme.  相似文献   

10.
During spore formation in Bacillus subtilis, sigma(E)-directed gene expression in the mother-cell compartment of the sporangium triggers the activation of sigma(G) in the forespore by a pathway of intercellular signalling that is composed of multiple proteins of unknown function. Here, we confirm that the vegetative protein SpoIIIJ, the forespore protein SpoIIQ and eight membrane proteins (SpoIIIAA through SpoIIIAH) produced in the mother cell under the control of sigma(E) are ordinarily required for intercellular signalling. In contrast, an anti-sigma(G) factor previously implicated in the pathway is shown to be dispensable. We also present evidence suggesting that SpoIIIJ is a membrane protein translocase that facilitates the insertion of SpoIIIAE into the membrane. In addition, we report the isolation of a mutation that partially bypasses the requirement for SpoIIIJ and for SpoIIIAA through SpoIIIAG, but not for SpoIIIAH or SpoIIQ, in the activation of sigma(G). We therefore propose that under certain genetic conditions, SpoIIIAH and SpoIIQ can constitute a minimal pathway for the activation of sigma(G). Finally, based on the similarity of SpoIIIAH to a component of type III secretion systems, we speculate that signalling is mediated by a channel that links the mother cell to the forespore.  相似文献   

11.
12.
During sporulation in Bacillus subtilis, the mother cell membranes migrate around the forespore in a phagocytic-like process called engulfment. Developmental gene expression requires the successful completion of this key morphological event. Here we show that perturbations to engulfment block the accumulation of proteins secreted into the space between the mother cell and forespore membranes. Our data support a model in which engulfment defects cause the proteolytic clearance of these secreted proteins. Importantly, we show that this degradative response is reversible; once proper engulfment is restored, secreted proteins again accumulate. In particular, we have found that the forespore signalling protein SpoIVB fails to accumulate when engulfment is impaired and, as a result, late mother cell gene expression under the control of sigma(K) is blocked. If engulfment is restored, SpoIVB accumulates and cell-cell signalling resumes. Thus, this degradative pathway functions like a developmental checkpoint ensuring that mother cell gene expression does not commence unless morphogenesis proceeds normally.  相似文献   

13.
14.
15.
BACKGROUND: The asymmetric cell division during sporulation in Bacillus subtilis gives rise to two compartments: the mother cell and the forespore. Each follow different programs of gene expression coordinated by a succession of alternate RNA polymerase sigma factors. The activity of the first of these sigma factors, sigmaF, is restricted to the forespore although sigmaF is present in the predivisional cell and partitions into both compartments following the asymmetric septation. For sigmaF to become active, it must escape from a complex with its cognate anti-sigma factor, SpoIIAB. This relief from SpoIIAB inhibition requires the dephosphorylation of the anti-sigma factor antagonist, SpoIIAA. The phosphorylation state of SpoIIAA is thus a key determinant of sigmaF activity and cell fate. RESULTS: We have solved the crystal structures of SpoIIAA from Bacillus sphaericus in its phosphorylated and unphosphorylated forms. The overall structure consists of a central beta-pleated sheet, one face of which is buried by a pair of alpha helices, while the other is largely exposed to solvent. The site of phosphorylation, Ser57, is located at the N terminus of helix alpha2. The phosphoserine is exceptionally well defined in the 1.2 A electron density maps, revealing that the structural changes accompanying phosphorylation are slight. CONCLUSIONS: Comparison of unphosphorylated and phosphorylated SpoIIAA shows that covalent modification has no significant effect on the global structure of the protein. The phosphoryl group has a passive role as a negatively charged flag rather than the active role it plays as a nucleus of structural reorganization in many eukaryotic signaling systems.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号