首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Ca2+-sensitive electrode was used to study net Ca2+-flux changes induced by the administration of phenylephrine, vasopressin and angiotensin to the perfused rat liver. The studies reveal that, although the Ca2+ responses induced by vasopressin and angiotensin are similar, they are quite different from the Ca2+ fluxes induced by phenylephrine. The administration of phenylephrine is accompanied by a stimulation of a net amount of Ca2+ efflux (140 nmol/g of liver). A re-uptake of a similar amount of Ca2+ occurs only after the hormone is removed. In contrast, the administration of vasopressin or angiotensin to livers perfused with 1.3 mM-Ca2+ induces the release of a relatively small amount of Ca2+ (approx. 40 nmol/g of liver) during the first 60 s. This is followed by a much larger amount of Ca2+ uptake (70-140 nmol/g of liver) after 1-2.5 min of hormone administration, and a slow efflux or loss of a similar amount of Ca2+ over a period of 6-8 min. At lower concentrations of perfusate Ca2+ (less than 600 microM) these hormones induce only a net efflux of the ion. These results suggest that at physiological concentrations of extracellular Ca2+ the mechanism by which alpha-adrenergic agonists mobilize cellular Ca2+ is different from that involving vasopressin and angiotensin. It seems that the hormones may have quite diverse effects on Ca2+ transport across the plasma membrane and perhaps organellar membranes in liver.  相似文献   

3.
Adrenaline (through alpha 1-adrenoceptors), vasopressin and angiotensin II stimulate mitochondrial glutaminase activity. This stimulation probably contributes to the ureogenic effect of these hormones. The activity of the enzyme is sensitive to Ca2+ depletion. A role of Ca2+ in hormonal modulation of glutaminase activity is suggested.  相似文献   

4.
5.
Glycogen synthesis in the perfused liver of the starved rat   总被引:1,自引:18,他引:1  
1. In the isolated perfused liver from 48h-starved rats, glycogen synthesis was followed by sequential sampling of the two major lobes. 2. The fastest observed rates of glycogen deposition (0.68–0.82μmol of glucose/min per g fresh liver) were obtained in the left lateral lobe, when glucose in the medium was 25–30mm and when gluconeogenic substrates were present (pyruvate, glycerol and serine: each initially 5mm). In this situation there was no net disappearance of glucose from the perfusion medium, although 14C from [U-14C]glucose was incorporated into glycogen. There was no requirement for added hormones. 3. In the absence of gluconeogenic precursors, glycogen synthesis from glucose (30mm) was 0–0.4μmol/min per g. 4. When livers were perfused with gluconeogenic precursors alone, no glycogen was deposited. The total amount of glucose formed was similar to the amount converted into glycogen when 30mm-glucose was also present. 5. The time-course, maximal rates and glucose dependence of hepatic glycogen deposition in the perfused liver resembled those found in vivo in 48h-starved rats, during infusion of glucose. 6. In the perfused liver, added insulin or sodium oleate did not significantly affect glycogen synthesis in optimum conditions. In suboptimum conditions (i.e. glucose less than 25mm, or with gluconeogenic precursors absent) insulin caused a moderate acceleration of glycogen deposition. 7. These results suggest that on re-feeding after starvation in the rat, hepatic glycogen deposition could be initially the result of continued gluconeogenesis, even after the ingestion of glucose. This conclusion is discussed, particularly in connexion with the role of hepatic glucokinase, and the involvement of the liver in the glucose intolerance of starvation.  相似文献   

6.
Infusion of platelet-activating factor (alkyl acetylglycerophosphocholine (AGEPC] into isolated perfused rat livers caused a dose-dependent, transient increase in portal vein pressure, indicative of constriction of the hepatic vasculature. A close correlation was observed between the changes in portal pressure and concomitant transient increases in hepatic glucose output. The two processes displayed similar dose dependence and were attenuated to a similar extent by reducing the perfusate calcium concentration. Reducing the perfusate free calcium concentration to 1 nM by co-infusion of EGTA did not abolish completely the hepatic responses to AGEPC. Verapamil inhibited both the hemodynamic and glycogenolytic responses to AGEPC in a dose-dependent fashion; the IC50 was approximately 10 microM at an AGEPC concentration of 6.6 X 10(-11) M. Also, both responses displayed similar degrees of tachyphylaxis in response to repeated short infusions of AGEPC. Measurement of glycogen phosphorylase a in extracts from freeze-clamped livers demonstrated a rapid increase in phosphorylase a in response to infusion of AGEPC. A small but significant increase in whole tissue ADP was found in response to AGEPC (2 X 10(-8) M); cAMP levels were not changed by AGEPC infusion. It is concluded that glycogenolysis in the perfused liver in response to AGEPC may be a result of the hemodynamic effects of AGEPC, rather than a direct effect of the phospholipid mediator on the hepatocyte.  相似文献   

7.
In isolated perfused rat liver leukotriene C4 and D4 but not B4 and E4 enhanced glucose and lactate output and lowered perfusion flow similar to the thromboxane A2 analogue U46619, extracellular ATP and prostaglandin F2 alpha. The kinetics of the metabolic changes caused by leukotriene C4 and D4 resembled those effected by U46619 and ATP but not those elicited by prostaglandin F2 alpha; the kinetics of the hemodynamic changes were similar only to those caused by U46619. The results show that leukotrienes could be important modulators of hepatic metabolism and hemodynamics and point to a complex intra-organ cell-cell communication between non-parenchymal and parenchymal cells.  相似文献   

8.
9.
Tracer kinetic studies on the effect of i.v. infused adrenaline and angiotensin, and a hyperglycemia induced by glucose application, upon glucose metabolism of the rat brain under ischemic and normoxic conditions are reported. in the ischemic brain, the initial glycolytic rate proved dependent on the glucose content being kept at various levels by glucose administration or hormone infusion prior to the onset of ischemia. The typical saturation kinetics revealed a maximal glucose conversion only from a definite initial content of brain glucose, being equivalent to a glucose level of approximately 13 mumole/ml in plasma, and appeared to depend on the presence of glucose in the cellular space. The early cessation of anaerobic lactate formation even with high glucose in the cellular space. The early cessation of anaerobic lactate formation even with high glucose depot in the brain tissue is referred to inhibition of glycolytic key enzymes by increasing tissue azidosis. The aerobic glucose conversion, as calculated from the Cglucose flux in amino acids associated with the citrate cycle was unaffected by the cerebral glucose content (hyperglycemia by hormone or glucose application). During glucose infusion the cerebral levels of NH3, total NH2 and glutamine rose; the Cglucose flux into aspartate and glutamine was increased and almost proportionally reduced in glutamate and gamma-aminobutyrate. These flux shifts are interpreted as a switching of C-chains from pyruvate owing to increased CO2 fixation, and as a biochemical correlate of an increased irritation level of the experimental animals.  相似文献   

10.
The proportion of pyruvate dehydrogenase in its active form is doubled in rat liver within 5 min of addition of vasopressin to the perfusing medium.  相似文献   

11.
The rate of change of the concentration of various metabolites in blood in vivo and of the metbolism of free fatty acids by the perfused liver in vitro was sutidied as a function of time after the induction of acute insulin deficiency in rats by administration of guinea pig anti-insulin serum; the rate of reversal of these changes afte treatment of the anti-insulinserum diabetic ratss with insulin was also investigated. The concentrations of blood glucose and ketonebodies, and plasma-free fatty acids increased rapidly after injection of anti-insuli serum, while plasma triglycerides increased more slowly. These alterations were restored rapidly toward normal after treatment of the diabetic animals with insulin...  相似文献   

12.
13.
1. Livers from fed male rats were perfused in situ in a non-recirculating system with whole rat blood containing acetate at six concentrations, from 0.04 to 1.5 μmol/ml, to cover the physiological range encountered in the hapatic portal venous blood in vivo. 2. Below a concentration of 0.25 μmol/ml there was net production of acetate by the liver, while above it there was ner uptake with a fractional extraction of 40%. 3.No relationship was observed between blood [acetate] and hepatic ketogenesis, the ration [3-hydroxybutyrate]/[acetoacetate] or glucose output, either at low fatty acid concentration s or during oleate infusion. 4. Following the increase in serum fatty acid concentration, induced by oleate infusion, there were suquential incresase in ketogenesis and the ratio of [3-hydroxybutyrate]/[acetoacetate] while glucose output rose and lactate uptake fell significantly after in redox state. 5. There was a highly significant negative correlation between blood [acetate] and hepatic lactate uptake during oleate infusion. At the highest acetate concentration of 1.5 μmol/ml there was a small net hepatic lactate output. After oleate infusion ceased, lactate uptake increased, but the negative correlation between blood [acetate] and hepatic lactate uptake persisted. 6. Livers were also perfused with iether [1-14C]acetate or [U-14C]lactate at a concentration of acetate of either 0.3 or 1.3 μmol/ml of blood. With [1-14C]acetate, most of the radioactivity was recovered as fatty acids at the lower concentration of blood acetate. At the higher blood [acetate] a considerably smaller proportion of the radioactivity was recovered in lipids. With [U-14C]lactate the reverse pattern obtained i.e., recovery was greater at the high concentration of acetate and fell at the low concentration. Fatty acid biosynthesis, measured with 3H2O, was stimulated from 2.4 to 6.6 μmol of fatty acid/g of liver per h by high blood [acetate] although the contribution of (acetate+lactate) to synthesis remained constant at 33–38% of the total. 7. These results emphasize the important role of the liver in regulating blood acetate concentrations and indicate that it can be major hepatic substrate. Acetate taken up by the liver appeared to compete directly with lactate, for lipogenesis and metabolism and acetate uptake was inhibited by raised bloodd [lactate].  相似文献   

14.
The supraoptic-hypophyseal tract is a primary system for the synthesis and release of vasopressin. Angiotensin II (AII) has been shown to release vasopressin when injected into the cerebral ventricles (IVT). However, intravenous (IV) AII injections have not produced consistent results. The present studies were conducted to examine the effects of AII delivered by either route on the unit activity of supraoptic nucleus (SON) magnocellular neurons. Rats were prepared with intracranial cannulas to insure delivery of drugs to the left lateral ventricle and with polyethylene catheters in the left jugular vein, femoral vein, and femoral artery for systemic injections and arterial pressure recordings. A ventral approach permitted recording from the SON without violating the ventricular-SON partition. Magnocellular neurons were electrophysiologically identified. In the majority of identified cells, IVT AII increased activity. In others pressor doses of AII IV inhibited firing while blood pressure was elevated. After sino-aortic denervation, AII IV excited SON neurons. Based on latency, and the fact that lesioning the anteroventral third ventricle blocked the action of AII IVT, the results indicate that AII IVT acts on a periventricular site to influence SON magnocellular neurons. Furthermore, systemic AII may have two effects on SON neurons: a central excitatory action, and an inhibition due to a baroreceptor reflex.  相似文献   

15.
16.
1. Net glycogen accumulation was measured in sequentially removed samples during perfusion of the liver of starved streptozotocin-diabetic rats, and shown to be significantly impaired, compared with rates in normal (starved) rats. 2. In perfusions of normal livers with glucose plus C3 substrates, there was an increase in the proportion of glycogen synthetase 'a', compared with that in the absence of substrates. This response to substrates, followed in sequential synthesis and enzymic sensitivity in the perfused liver of diabetic rats were reversed by pretreatment in vivo with glucose plus fructose, or insulin. Glucose alone did not produce this effect. 4. Glucose, fructose, insulin or cortisol added to e perfusion medium (in the absence of pretreatment in vivo) did not stimulate glycogen synthesis in diabetic rats. 5. In intact diabetic rats, there was a decline in rates of net hepatic glycogen accumulation, and the response of glycogen synthetase to substrates. The most rapid rates of synthesis were obtained after fructose administration. 6. These results demonstrate that there is a marked inherent impairment in hepatic glycogen synthesis in starved diabetic rats, which can be rapidly reversed in vivo but no in perfusion. Thus hepatic glycogen synthesis does not appear to be sensitive to either the short-term direct action of insulin (added alone to perfusions) of to long-term insulin deprivation in vivo. The regulatory roles of substrates, insulin and glycogen synthetase in hepatic glycogen accumulation are discussed.  相似文献   

17.
Glycogen synthesis in the perfused liver of adrenalectomized rats.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. A total loss of capacity for net glycogen synthesis was observed in experiments with the perfused liver of starved adrenalectomized rats. 2. This lesion was corrected by insulin or cortisol in vivo (over 2-5h), but not by any agent tested in perfusion. 3. The activity of glycogen synthetase a, and its increase during perfusion, in the presence of glucose plus glucogenic substrates, were proportional to the rate of net glycogen accumulation. 4. This complete inherent loss of capacity for glycogen synthesis after adrenalectomy is greater than any defect in hepatic metabolism yet reported in this situation, and is not explicable by a decrease in the rate of gluconegenesis (which supports glycogen synthesis in the liver of starved rats). The short-term (2-5h) stimulatory effect of glucocorticoids in the intact animal, on hepatic glycogen deposition, may be mediated partly through insulin action, although neither insulin or cortisol appear to act directly on the liver to stimulate glycogen synthesis.  相似文献   

18.
Infusion of adenosine into perfused rat livers resulted in transient increases in glucose output, portal-vein pressure, the effluent perfusate [lactate]/[pyruvate] ratio, and O2 consumption. 8-Phenyltheophylline (10 microM) inhibited adenosine responses, whereas dipyridamole (50 microM) potentiated the vasoconstrictive effect of adenosine. The order of potency for adenosine analogues was: 5'-N-ethylcarboxamidoadenosine (NECA) greater than L-phenylisopropyladenosine greater than cyclohexyladenosine greater than D-phenylisopropyladenosine greater than 2-chloroadenosine greater than adenosine, consistent with adenosine actions modulated through P1-purine receptors of the A2-subtype. Hepatic responses exhibited homologous desensitization in response to repeated infusion of adenosine. Adenosine effects on the liver were attenuated at lower perfusate Ca2+ concentrations. Indomethacin decreased hepatic responses to both adenosine and NECA. Whereas adenosine stimulated glycogen phosphorylase activity in isolated hepatocytes, NECA caused no effect in hepatocytes. The response to adenosine in hepatocytes was inhibited by dipyridamole (50 microM), but not 8-phenyltheophylline (10 microM). The present study indicates that, although adenosine has direct effects on parenchymal cells, indirect effects of adenosine, mediated through the A2-purinergic receptors on another hepatic cell type, appear to play a role in the perfused liver.  相似文献   

19.
20.
Vasopressin-induced glucose release from the perfused livers of fed rats is diminished in the presence of insulin or following adrenal ablation. The reduced rate of glucose release following vasopressin treatment in the perfused livers of adrenalectomized rats was restored towards the control value by cortisol treatment in vivo. Vasopressin did not influence the total rate of fatty acid synthesis in the livers of fed rats perfused with medium containing glucose and two concentrations of lactate. The contribution of these precursors to hepatic fatty acid synthesis and CO2 production was similarly uninfluenced by vasopressin. Vasopressin casued a transient increase in the release of K+ by the perfused liver which was observed within 2 min of hormone administration. These results are discussed in relation to the possible mode of action of vasopressin in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号