首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have isolated heparan sulfate proteoglycans (HSPGs) from cloned rat microvascular endothelial cells using a combination of ion-exchange chromatography, affinity fractionation with antithrombin III (AT III), and gel filtration in denaturing solvents. The anticoagulantly active heparan sulfate proteoglycans (HSPGact) which bind tightly to AT III bear mainly anticoagulantly active heparan sulfate (HSact) whereas the anticoagulantly inactive heparan sulfate proteoglycans (HSPGinact) possess mainly anticoagulantly inactive heparan sulfate (HSinact). HSact and HSinact were also isolated by a combination of ion-exchange chromatography, treatment with protease and chondroitin ABC lyase, and affinity fractionation with AT III. HSact and HSinact have molecular sizes of about 25-30 kDa with the same overall composition of monosaccharides except that HSact exhibits about nine glucuronsyl 3-O-sulfated glucosamines/chain whereas HSinact possesses about three glucuronsyl 3-O-sulfated glucosamines/chain. Direct isolation of the AT III-binding site of HSact by exposing carbohydrate chains to Flavobacterium heparitinase in the presence of protease inhibitor revealed only a single interaction site which contained two to three glucuronsyl 3-O-sulfated glucosamine residues. The core proteins of HSPGact and HSPGinact were isolated by treatment with Flavobacterium heparitinase and purification by ion-exchange chromatography. The molecular sizes of the core proteins were established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and their primary structures were examined by cleavage with trypsin or endopeptidase Glu-C as well as separation of peptides by reverse-phase high performance liquid chromatography. The results showed that both sets of core proteins exhibited three major components with molecular sizes of 50, 30, and 25 kDa, respectively. The 25-kDa species appears to be a proteolytic degradation product of the 30-kDa species. The peptide mapping revealed that HSPGact and HSPGinact possess extremely similar core proteins.  相似文献   

2.
3.
Rat ovarian granulosa cells were isolated from immature female rats after stimulation with pregnant mare's serum gonadotropin and maintained in culture. Proteoglycans were labeled using [35S]sulfate, [3H]serine, [3H]glucosamine, or [3H]mannose as precursors. A species of heparan sulfate proteoglycan was purified using DEAE-Sephacel chromatography under dissociative conditions in the presence of detergent. The heparan sulfate proteoglycan, which constituted approximately 15% of the 35S-labeled proteoglycans in the culture medium has a similar hydrodynamic size (Kd = 0.62 on Sepharose CL-2B) and buoyant density distribution in CsCl density gradients as the low buoyant density dermatan sulfate proteoglycan synthesized by the same granulosa cells and described in the accompanying report (Yanagishita, M., and Hascall, V. C. (1983) J. Biol. Chem. 258, 12847-12856). The heparan sulfate chains (average Mr = 28,000) have an average of 0.8-0.9 sulfate groups/repeating disaccharide, of which 50% are N-sulfate, 30% are alkaline-labile O-sulfate (presumably on the 6-position of glucosamine residues), and 20% are alkaline-resistant O-sulfate groups. Alkaline borohydride treatment released both N-linked oligosaccharide-peptides containing mannose, glucosamine, and sialic acid, and O-linked oligosaccharides. Trypsin digestion of the proteoglycan generated fragments which contain (a) glycosaminoglycan-peptides with an average of 2 heparan sulfate chains/peptide; (b) clusters of O-linked oligosaccharides on peptides; and (c) N-linked oligosaccharide-peptides, which are as small as single N-linked oligosaccharides. The compositions of the O-linked and N-linked oligosaccharides and the trypsin fragments of this heparan sulfate proteoglycan were very similar to those of the low buoyant density dermatan sulfate proteoglycan synthesized by the same cells.  相似文献   

4.
Rat glomerular heparan sulfate (HS) and dermatan sulfate (DS) proteoglycan synthesis was studied in vitro and in vivo. Incorporation of [35S]sulfate into macromolecules was linear over 16 h in vitro, and DS was the predominant glycosaminoglycan (GAG), while HS dominated in vivo incubations. Proteoglycans were found in the bottom 2/5 (high density) CsCl gradient fractions and eluted as two overlapping peaks from DEAE-Sephacel columns. The proportion of low density 35S-glycoproteins and 35S-proteoglycans increased with time. Two high buoyant density HS proteoglycans were extracted from glomeruli and eluted in DEAE peak I. The first, HS-tIA, had an Mr of 130 X 10(3) with Mr 12.5 X 10(3) GAG chains. This proteoglycan was released from the tissue by trypsin and was partially displaced by heparin treatment. In addition, it was rapidly released into the medium of label-chase experiments after which it migrated slightly more rapidly than HS-tIA in gels, with HS chains similar in length to its tissue counterpart. The second, HS-tIB, had an Mr of 8.6 X 10(3) with little or no attached protein. This proteoglycan was characterized as intracellular as it resisted release by trypsin treatment or heparin extraction in medium and was not detected in the medium of label-chase experiments. Two tissue DS proteoglycans were characterized. The first, DS-tIA, co-purified with HS-tIA and was the predominant proteoglycan synthesized during 4-h in vitro incubations. Like HS-tIA, it was rapidly released into medium and displaced from cell surfaces or tissue "receptors" by heparin or trypsin treatments. A second, Sepharose CL-6B-excluded DS proteoglycan from DEAE peak II, DS-tII, accumulated in tissue over 16 h in vitro. This proteoglycan was self-associating and contained clusters of iduronic acid residues along its Mr 26 X 10(3) DS chains. It resisted extraction from the tissue with heparin, trypsin, and detergent. No DS-tII was detected in the incubation medium. Instead, medium proteoglycans eluted as single Sepharose CL-6B-included peaks. DS chains from medium proteoglycans were shorter (Mr 18 X 10(3)) and had more regularly spaced iduronic acid residues than GAGs from DS-tII. The length and sulfation patterns of DS-mII GAG were similar to GAG from DS-tIA. Thus, glomeruli rapidly synthesized and released Sepharose CL-6B-included heparin-displaceable DS and HS proteoglycans while retaining a Sepharose CL-6B-excluded self-associating DS proteoglycan and an intracellular HS.  相似文献   

5.
Heparitinase digestion of the hydrophobic membrane-associated heparan sulfate proteoglycans (HSPG) of fetal human lung fibroblasts yields core proteins of various sizes: i.e. monomeric core proteins of 125, 90, 64, 48, and 35 kDa and a disulfide-linked dimeric core protein composed of approximately 35-kDa subunits. By immunizing BALB/c mice with liposome-incorporated HSPG, we have obtained a total of five anti-HSPG monoclonal antibodies (Mabs, i.e. Mabs S1, 1C7, 2E9, 6G12, and 10H4) with different specificities. Polyacrylamide gel electrophoresis of 125I-labeled membrane HSPG immunoprecipitated with these Mabs revealed that Mabs 1C7 and 2E9 bind only membrane HSPG which yield a 125-kDa core protein after heparitinase digestion, whereas Mab S1-bound HSPG yield a 64-kDa core protein, and Mabs 6G12 and 10H4 retain membrane HSPG with a 48-kDa core protein. Western blotting of the heparitinase-digested proteoglycans and immunostaining with the Mabs confirmed this pattern of reactivity. However, in this assay, Mabs 6G12 and 10H4 also detected a minor approximately 90-kDa core protein in addition to the 48-kDa core protein. Except perhaps for the 10H4 epitope, the epitopes recognized by these Mabs appear to be part of the peptide moieties as they resisted complete deglycosylation of the HSPG with trifluoromethanesulfonic acid. Since these data were inconsistent with a direct relationship between the major core proteins, the 48-, 64-, and 125-kDa core proteins were immunopurified and further compared by peptide mapping with Staphylococcus aureus protease V8, trypsin, and CNBr cleavage. Clearly distinct peptide patterns were obtained for the three different core proteins. These results imply that the 48-, 64-, and the 125-kDa membrane HSPG core proteins of human lung fibroblasts are derived from distinct proteoglycans.  相似文献   

6.
We have isolated and characterized the cell-associated and secreted proteoglycans synthesized by a clonal line of rat adrenal medullary PC12 pheochromocytoma cells, which have been extensively employed for the study of a wide variety of neurobiological processes. Chondroitin sulfate accounts for 70-80% of the [35S] sulfate-labeled proteoglycans present in PC12 cells and secreted into the medium. Two major chondroitin sulfate proteoglycans were detected with molecular sizes of 45,000-100,000 and 120,000-190,000, comprising 14- and 105-kDa core proteins and one or two chondroitin sulfate chains with an average molecular size of 34 kDa. In contrast to the chondroitin sulfate proteoglycans, one major heparan sulfate proteoglycan accounts for most of the remaining 20-30% of the [35S] sulfate-labeled proteoglycans present in the PC12 cells and medium. It has a molecular size of 95,000-170,000, comprising a 65-kDa core protein and two to six 16-kDa heparan sulfate chains. Both the chondroitin sulfate and heparan sulfate proteoglycans also contain O-glycosidically linked oligosaccharides (25-28% of the total oligosaccharides) and predominantly tri- and tetraantennary N-glycosidic oligosaccharides. Proteoglycans produced by the original clone of PC12 cells were compared with those of two other PC12 cell lines (B2 and F3) that differ from the original clone in morphology, adhesive properties, and response to nerve growth factor. Although the F3 cells (a mutant line derived from B2 and reported to lack a cell surface heparan sulfate proteoglycan) do not contain a large molecular size heparan sulfate proteoglycan species, there was no significant difference between the B2 and F3 cells in the percentage of total heparan sulfate released by mild trypsinization, and both the B2 and F3 cells synthesized cell-associated and secreted chondroitin sulfate and heparan sulfate proteoglycans having properties very similar to those of the original PC12 cell line but with a reversed ratio (35:65) of chondroitin sulfate to heparan sulfate.  相似文献   

7.
Rat Sertoli cells were cultured for 48 h in the presence of [35S]sulfate and extracted with 4 M guanidine chloride. In this extract, a Sepharose CL-2B Kav 0.10 proteoheparan appeared lipid associated, since after addition of detergent it emerged at Kav = 0.65 on Sepharose CL-2B. Treatment of cells with 0.2% Triton X-100 released 35S-labeled material which was purified by ion-exchange chromatography and hydrophobic interaction chromatography on octyl-Sepharose. Proteoglycan with affinity for octyl-Sepharose (Kav = 0.30 and 0.12 on Sepharose CL-4B and CL-6B, respectively) mostly carried heparan sulfate chains with Kav = 0.38 and minor proportion of heparan chains with Kav = 0.77 on Sepharose CL-6B. An association with lipids was confirmed by intercalation into liposomes of this proteoheparan which might be anchored in the plasma membrane, via an hydrophobic segment and/or covalently linked to an inositol-containing phospholipid. Non-hydrophobic material consisted of: (i) proteoheparan slightly smaller in size than lipophilic proteoheparan and possibly deriving from this one and (ii) two heparan sulfate glycosaminoglycan populations (Kav = 0.38 and 0.86 on Sepharose CL-6B) corresponding to single glycosaminoglycan chains and their degradation products.  相似文献   

8.
Various forms of heparan sulfate proteoglycan were solubilized from the mouse Engelbreth-Holm-Swarm (EHS) sarcoma by extraction with 0.5 M NaCl, collagenase digestion and extraction with 4 M guanidine. They could be separated into high (greater than or equal to 1.65 g/ml) and low (1.38 g/ml) buoyant density variants. The high-density form from the NaCl extract and collagenase digest had Mr = 130000 and So20,W = 4.5 S and contained 4-10% protein, indicating Mr = 5 000-12 000 for the protein core. This proteoglycan exhibited polydispersity as shown by rotary shadowing electron microscopy and ultracentrifugation. An average molecule consisted of four heparan sulfate chains (Mr = 29 000) each with a length of 32 +/- 10 nm. The low-density form (Mr about 400 000) could not be completely purified and contained about 50% protein. As shown by radioimmunoassay, the various proteoglycans shared similar protein cores. Labeling of the tumor in vivo or in vitro demonstrated preferential incorporation of radioactive sulfate in the high-density form. The high-density proteoglycan interacted in affinity chromatography by virtue of its heparan sulfate chains with laminin, fibronectin, the globular domain NC1 and the triple helix of collagen IV. These interactions were abolished at moderate concentrations of NaCl (0.1-0.2 M) and in the presence of heparin, chondroitin sulfate or dextran sulfate. Interactions with the globule NC1 could also be demonstrated by velocity band centrifugation in sucrose gradients and a binding constant of about 10(6) M-1 was derived.  相似文献   

9.
The glycosylphosphatidylinositol (GPI)-anchor of the plasma membrane-associated heparan sulfate (HS) proteoglycan was metabolically radiolabeled with [3H]myristic acid, [3H]palmitic acid, [3H]inositol, [3H]ethanolamine, or [32P]phosphate in rat ovarian granulosa cell culture. Cell cultures labeled with [3H]myristic acid or [3H]palmitic acid were extracted with 4 M guanidine HCl buffer containing 2% Triton X-100 and the proteoglycans were purified by ion exchange chromatography after extensive delipidation. Specific incorporation of 3H into GPI-anchor was demonstrated by removing the label with a phosphatidylinositol-specific phospholipase C (PI-PLC). Incorporation of 3H activity into glycosaminoglycans and core glycoproteins was also demonstrated. However, the specific activity of 3H in these structures was approximately 2 orders of magnitude lower than that in the GPI-anchor, suggesting that 3H label was the result of the metabolic utilization of catabolic products of the 3H-labeled fatty acids. PI-PLC treatment of cell cultures metabolically labeled with [3H]inositol, [3H]ethanolamine, or [32P]phosphate specifically released radiolabeled cell surface-associated HS proteoglycans indicating the presence of GPI-anchor in these proteoglycans. GPI-anchored HS proteoglycans accounted for 20-30% of the total cell surface-associated HS proteoglycans and virtually all of them were removed by PI-PLC. These results further substantiate the presence of GPI-anchored heparan sulfate proteoglycan in ovarian granulosa cells and its cell surface localization.  相似文献   

10.
Ovarian granulosa cells synthesize anticoagulant heparan sulfate proteoglycans (aHSPGs), which bind and activate antithrombin III. To determine if aHSPGs could contribute to the control of proteolytic activities involved in follicular development and ovulation, we studied the pattern of expression of these proteoglycans during the ovarian cycle. aHSPGs were localized on cells and tissues by (125)I-labeled antithrombin III binding followed by microscopic autoradiography. Localization of aHSPGs has shown that cultured granulosa cells, hormonally stimulated by gonadotropins to differentiate in vitro, up-regulate their synthesis and release of aHSPGS: In vivo, during gonadotropin-stimulated cycle, aHSPGs are present on granulosa cells of antral follicles and are strongly labeled in preovulatory follicles. These data demonstrate that aHSPG expression in the ovarian follicle is hormonally induced to culminate in preovulatory follicles. Moreover, we have shown that five heparan sulfate core proteins mRNA (perlecan; syndecan-1, -2, and -4; and glypican-1) are synthesized by granulosa cells, providing attachment for anticoagulant heparan sulfate chains on the cell surface and in the extracellular matrix. These core proteins are constantly expressed during the cycle, indicating that modulations of aHSPG levels observed in the ovary are likely controlled at the level of the biosynthesis of anticoagulant heparan sulfate glycosaminoglycan chains. This expression pattern enables aHSPGs to focus serine protease inhibitors in the developing follicle to control proteolysis and fibrin formation at ovulation.  相似文献   

11.
Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans   总被引:26,自引:0,他引:26  
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intrachain sites, an activity that is strongly implicated in cell dissemination associated with metastasis and inflammation. In addition to its structural role in extracellular matrix assembly and integrity, HS sequesters a multitude of polypeptides that reside in the extracellular matrix as a reservoir. A variety of growth factors, cytokines, chemokines, and enzymes can be released by heparanase activity and profoundly affect cell and tissue function. Thus, heparanase bioavailability, accessibility, and activity should be kept tightly regulated. We provide evidence that HS is not only a substrate for, but also a regulator of, heparanase. Addition of heparin or xylosides to cell cultures resulted in a pronounced accumulation of, heparanase in the culture medium, whereas sodium chlorate had no such effect. Moreover, cellular uptake of heparanase was markedly reduced in HS-deficient CHO-745 mutant cells, heparan sulfate proteoglycan-deficient HT-29 colon cancer cells, and heparinase-treated cells. We also studied the heparanase biosynthetic route and found that the half-life of the active enzyme is approximately 30 h. This and previous localization studies suggest that heparanase resides in the endosomal/lysosomal compartment for a relatively long period of time and is likely to play a role in the normal turnover of HS. Co-localization studies and cell fractionation following heparanase addition have identified syndecan family members as candidate molecules responsible for heparanase uptake, providing an efficient mechanism that limits extracellular accumulation and function of heparanase.  相似文献   

12.
The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane. The glomerular basement membrane [35S]heparan sulfate proteoglycans, identified by immunoprecipitation, have a very rapid turnover with an initial phase, t1/2 = 5 h, and a later phase t1/2 = 20 h.  相似文献   

13.
Isolation and characterization of heparan sulfate from rat kidney   总被引:1,自引:0,他引:1  
  相似文献   

14.
The precursor protein of a basement membrane specific heparan sulfate proteoglycan has been identified as a 400,000 Mr polypeptide. Antibodies against large and small forms of this proteoglycan, isolated from a basement membrane (Engelbreth-Holm-Swarm, EHS) tumor, immunoprecipitated the same 400,000 protein from pulse-labeled EHS cells. The proteoglycan precursor protein was not recognized by antibodies against other basement membrane components or by antibodies to the cartilage proteoglycan. Furthermore, heparan sulfate proteoglycan purified from the EHS tumor blocked the immunoprecipitation of the precursor protein. Pulse-chase studies with [35S]methionine showed the precursor protein was converted to a proteoglycan. Pulse-chase studies with 35SO4 showed the large, low density proteoglycan appeared first and was degraded to a smaller, high density proteoglycan. We propose that the precursor protein is used after very little or no modification in the assembly of a large, low density heparan sulfate proteoglycan and that a portion of the population of these macromolecules are subsequently degraded to a smaller form.  相似文献   

15.
Disulfide-bonded aggregates of heparan sulfate proteoglycans   总被引:1,自引:0,他引:1  
Heparan sulfate proteoglycans have been isolated from Swiss mouse 3T3 cells by using two nondegradative techniques: extraction with 4 M guanidine or 2.5% 1-butanol. These proteoglycans were separated from copurifying chondroitin sulfate proteoglycans by using ion-exchange chromatography on DEAE-cellulose in the presence of 2 M urea. The purified heparan sulfate proteoglycans are substantially smaller, ca. Mr 20 000, than those isolated from these same cells with trypsin, ca. Mr 720 000 [Johnston, L.S., Keller, K. L., & Keller, J. M. (1979) Biochim. Biophys. Acta 583, 81-94]. However, all of the heparan sulfate proteoglycans extracted by these three methods contain similar glycosaminoglycan chains (Mr 7500) and are derived from the same pool of cell surface associated molecules. The trypsin-released heparan sulfate proteoglycan (ca. Mr 720 000) can be significantly reduced in size (ca. Mr 33 000) under strong denaturing conditions in the presence of the disulfide reducing agent dithiothreitol, which suggests that this form of the molecule is a disulfide-bonded aggregate. The heparan sulfate proteoglycan isolated from the medium also undergoes a significant size reduction in the presence of dithiothreitol, indicating that a similar aggregate is formed as part of the normal release of heparan sulfate proteoglycans into the medium. These results suggest that well-shielded disulfide bonds between individual heparan sulfate proteoglycan monomers may account for the large variation in sizes which has been reported for heparan sulfate proteoglycans isolated from a variety of cells and tissues with a variety of extraction procedures.  相似文献   

16.
The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.  相似文献   

17.
Metabolically 35S- or 3H-labeled heparan sulfate was isolated from murine Reichert's membrane, an extraembryonic basement membrane produced by parietal endoderm cells, and from the basement membrane-producing Engelbreth-Holm-Swarm mouse tumor. The polysaccharides were subjected to structural analysis involving identification of products formed on deamination of the polysaccharides with nitrous acid. The polysaccharide from Reichert's membrane contained N- and O-sulfate groups in approximately equal proportions. It bound almost quantitatively and with high affinity to antithrombin. A high proportion of antithrombin-binding sequence was also indicated by the finding that 3-O-sulfated glucosamine residues accounted for about 10% of the total O-sulfate groups. In contrast, at least 80% of the sulfate residues in the heparan sulfate isolated from the mouse tumor were N-substituents. Only a minor proportion of this polysaccharide bound with high affinity to antithrombin, and no 3-O-sulfated glucosamine residues were detected. These results are discussed in relation to the possible functional role of heparan sulfate in basement membranes.  相似文献   

18.
硫酸肝素蛋白多糖广泛分布于动物组织的细胞膜和细胞外基质,对于机体发育和维持生理平衡至关重要.聚糖链硫酸肝素特有的分子结构使得这类大分子复合物具有多种生物功能,这些功能主要通过与蛋白质配体的结合实现.细胞表面的硫酸肝素蛋白多糖介导多种细胞活性因子与其受体的结合,参与信号转导的过程.硫酸肝素蛋白多糖也是细胞间质的重要组成部分,与胶原蛋白一起维持间质结构的稳定.肝素酶通过降解硫酸肝素从而调节细胞因子的活性和细胞间质的微环境.因此,揭示硫酸肝素的分子结构及其功能是生物学的一个重要研究方向.然而,由于硫酸肝素结构复杂,且不均一,使得这个领域的研究发展相对缓慢.不过,随着分析手段的提高和完善,国际上对于硫酸肝素结构与功能的报道迅速增加,同时国内对于硫酸肝素的研究也逐步受到重视.关于硫酸肝素的生理功能最近已有几篇比较全面的综述.此综述主要介绍硫酸肝素在病变中的作用,旨在探讨利用硫酸肝素和肝素酶作为靶标,研发预防和治疗这些疾病药物的可能性.  相似文献   

19.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

20.
We have previously shown that asymmetric collagen-tailed acetylcholinesterase (AChE) is anchored to the extracellular matrix (ECM) by heparan sulfate proteoglycans (HSPGs). Here we present our studies on the characterization of such PGs from the ECM of rat skeletal muscles. After radiolabeling with 35SO4 for 24h, PGs were extracted from the muscle ECM with 4.0 M guanidine-HCl containing protease inhibitors. PGs were subsequently isolated using sequential DEAE-Sephacel chromatography, digestion with chondroitinase ABC, and Sepharose CL-4B. Two different hydrodynamic size species of HSPGs were found. One type had a Mr of 4-6 X 10(5) (Kav = 0.25) as estimated by gel chromatography in the presence of 1% SDS and accounted for 75% of the total HSPGs. The other HSPG had a Mr 1.5-2.5 X 10(5) (Kav = 0.41). The glycosaminoglycan (GAG) side chains (Mr 20,000 and 12,000) were found composed only of heparan sulfate as determined by nitrous acid oxidation and heparitinase treatment. The large-sized HSPG, which is concentrated in synaptic regions, contains only GAG chains of Mr 20,000, suggesting that each HSPG contains only one kind of heparan sulfate chain in its structure. Our results definitively establish by biochemical criteria that the basement membrane of mammalian skeletal muscle contains HSPGs, the likely matrix receptor for the immobilization of the asymmetric collagen-tailed AChE at the neuromuscular junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号