首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

2.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

3.
Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.  相似文献   

4.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

5.
The CD4 receptor subserves both adhesion and signal transduction functions on CD4+ T-lymphocytes. CD4 is physically associated with the src-related protein tyrosine kinase p56lck. Cell surface engagement of CD4 leads to enzymatic activation of the associated p56lck and the phosphorylation of T-cell proteins on tyrosine residues. We have identified a 72-74kD protein phosphorylated on tyrosine residues following activation of CD4-associated p56lck as the serine-threonine kinase Raf-1. The demonstration that Raf-1 is a substrate for the CD4/p56lck receptor system in normal cells suggests that receptor and nonreceptor classes of protein tyrosine kinases can independently engage functionally overlapping signal transduction pathways.  相似文献   

6.
The ryanodine receptor of Jurkat T lymphocytes was phosphorylated on tyrosine residues upon stimulation of the cells via the T cell receptor/CD3 complex. The tyrosine phosphorylation was transient, reaching a maximum at 2 min, and rapidly declined thereafter. In co-immunoprecipitates of the ryanodine receptor, the tyrosine kinases p56(lck) and p59(fyn) were detected. However, only p59(fyn) associated with the ryanodine receptor in a stimulation-dependent fashion. Both tyrosine kinases, recombinantly expressed as glutathione S-transferase (GST) fusion proteins, phosphorylated the immunoprecipitated ryanodine receptor in vitro. In permeabilized Jurkat T cells, GST-p59(fyn), but not GST-p56(lck), GST-Grb2, or GST alone, significantly and concentration-dependently enhanced Ca(2+) release by cyclic ADP-ribose. The tyrosine kinase inhibitor PP2 specifically blocked the effect of GST-p59(fyn). This indicates that intracellular Ca(2+) release via ryanodine receptors may be modulated by tyrosine phosphorylation during T cell activation.  相似文献   

7.
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.  相似文献   

8.
Src family protein tyrosine kinases (PTKs) play an essential role in antigen receptor-initiated lymphocyte activation. Their activity is largely regulated by a negative regulatory tyrosine which is a substrate for the activating action of the CD45 phosphotyrosine phosphatase (PTPase) or, conversely, the suppressing action of the cytosolic p50csk PTK. Here we report that CD45 was phosphorylated by p50csk on two tyrosine residues, one of them identified as Tyr-1193. This residue was not phosphorylated by T-cell PTKs p56lck and p59fyn. Tyr-1193 was phosphorylated in intact T cells, and phosphorylation increased upon treatment with PTPase inhibitors, indicating that this tyrosine is a target for a constitutively active PTK. Cotransfection of CD45 and csk into COS-1 cells caused tyrosine phosphorylation of CD45 in the intact cells. Tyrosine-phosphorylated CD45 bound p56lck through the SH2 domain of the kinase. Finally, p50csk-mediated phosphorylation of CD45 caused a severalfold increase in its PTPase activity. Our results show that direct tyrosine phosphorylation of CD45 can affect its activity and association with Src family PTKs and that this phosphorylation could be mediated by p50csk. If this is also true in the intact cells, it adds a new dimension to the physiological function of p50csk in T lymphocytes.  相似文献   

9.
T lymphocyte activation resulting from antigen recognition involves a protein tyrosine kinase pathway which triggers phosphorylation of several cellular substrates including the CD3 zeta subunit of the T cell receptor (TCR) to form pp21. The homologous TCR-associated protein, CD3 eta, is an alternatively spliced product of the same gene locus as CD3 zeta. CD3 eta lacks one of six cytoplasmic tyrosine residues (Tyr-132) found in CD3 zeta and is itself not phosphorylated. Site-directed mutagenesis in conjunction with in vitro and in vivo phosphorylation studies herein demonstrates that Tyr-132 is required for the formation of pp21. Moreover, the differential phosphorylation of CD3 zeta versus CD3 eta is not due to a selective association of the known TCR-associated protein tyrosine kinase, p59fyn; p59fyn but not p56lck or p62yes is associated with each of the three TCR isoforms containing CD3 zeta 2, or CD3 eta 2, or CD3 zeta-eta. This association occurs through components of the TCR complex distinct from CD3 zeta or CD3 eta. In addition, we show that pp21 formation is not only dependent on Tyr-132 but results from concomitant phosphorylation of other CD3 zeta residues including Tyr-121. Mutation of Tyr-90, -121, or -132 does not alter primary signal transduction as shown by the ability of individual CD3 zeta Tyr----Phe mutants to produce interleukin-2 upon TCR stimulation. Thus, the substantial structural changes in CD3 zeta upon TCR stimulation as reflected by alteration in its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis may affect subsequent events such as receptor desensitization, receptor movement, and/or protein associations.  相似文献   

10.
Biochemical studies have demonstrated that phosphorylation of lymphocyte cell kinase (p56(lck) ) is crucial for activation of signaling cascades following T cell receptor (TCR) stimulation. However, whether phosphorylation/dephosphorylation of the activating or inhibitory tyrosine residues occurs upon activation is controversial. Recent advances in intracellular staining of phospho-epitopes and cytometric analysis, requiring few cells, have opened up novel avenues for the field of immunological signaling. Here, we assessed p56(lck) phosphorylation, using a multiparameter flow-cytometric based detection method following T cell stimulation. Fixation and permeabilization in conjunction with zenon labeling technology and/or fluorescently labeled antibodies against total p56(lck) or cognate phospho-tyrosine (pY) residues or surface receptors were used for detection purposes. Our observations showed that activation of Jurkat or primary human T cells using H(2) O(2) or TCR-induced stimulation led to simultaneous phosphorylation of the activating tyrosine residue, Y394 and the inhibitory tyrosine residue, Y505 of p56(lck) . This was followed by downstream calcium flux and expression of T cell activation markers; CD69 and CD40 ligand (CD40L). However, the extent of measurable activation readouts depended on the optimal stimulatory conditions (temperature and/or stimuli combinations). Treatment of cells with a p56(lck) -specific inhibitor, PP2, abolished phosphorylation at either residue in a dose-dependent manner. Taken together, these observations show that TCR-induced stimulation of T cells led to simultaneous phosphorylation of p56(lck) residues. This implies that dephosphorylation of Y505 is not crucial for p56(lck) activity. Also, it is clear that cytometric analysis provides for a rapid, sensitive, and quantitative method to supplement biochemical studies on p56(lck) signaling pathways in T cells at single cell level. ? 2012 International Society for Advancement of Cytometry.  相似文献   

11.
Engagement of interleukin-2 (IL-2) mediates the heterodimeridation of the common beta chain (beta(c)) and common gamma chain (gamma(c)) of the IL-2 receptor (IL-2R). This is sufficient and necessary for receptor activation and signal transduction. It is generally held that the IL-2R is activated by the trans-activity of the protein tyrosine kinases (PTKs) Jak1 and Jak3 associated with beta(c) and gamma(c) respectively. Transduction of proliferative signals requires Jak3 activity. A Jak3 independent signalling pathway involving p56(lck), generating anti-apoptotic signals, can be observed and requires the PROX domain of gamma(c). p56(lck) can be activated by dephosphorylation of an inhibitory carboxyl terminal phosphorylated tyrosine residue (Y505). We propose that this is mediated by a PROX domain associated protein tyrosine phosphatase (PTP). Activation of p56(lck) alone is insufficient for transduction of proliferative signals and thus works in concert with Jak3 mediated receptor activation. This indicates that both gamma(c) domains are vital for signal transduction.  相似文献   

12.
The protein-tyrosine kinase p56lck exhibits a restricted substrate specificity in vitro but can efficiently phosphorylate bovine myelin basic protein (MBP). Results obtained from both peptide mapping and fast atom bombardment mass spectrometry indicate that tyrosine 67 in the sequence -Thr-Thr-His-Tyr67-Gly-Ser-Leu-Pro-Gln-Lys- in bovine MBP is the specific phosphorylation site. p56lck does not phosphorylate the acidic, cytoplasmic domain of erythrocyte band 3. In contrast, p40, another protein-tyrosine kinase purified from bovine thymus that readily phosphorylates band 3, does not phosphorylate MBP. Therefore, MBP and band 3 may prove to be useful substrates for distinguishing between various tyrosine kinases on the basis of substrate specificity. In addition, identification of the recognition sequence in MBP for p56lck may contribute to an understanding of the structural features of physiological substrates for this kinase.  相似文献   

13.
To understand the mechanism(s) by which p56lck participates in T-cell receptor (TCR) signalling, we have examined the effects of mutations in known regulatory domains of p56lck on the ability of F505 p56lck to enhance the responsiveness of an antigen-specific murine T-cell hybridoma. A mutation of the amino-terminal site of myristylation (glycine 2), which prevents stable association of p56lck with the plasma membrane, completely abolished the ability of F505 p56lck to enhance TCR-induced tyrosine protein phosphorylation. Alteration of the major site of in vitro autophosphorylation, tyrosine 394, to phenylalanine diminished the enhancement of TCR-induced tyrosine protein phosphorylation by F505 p56lck. Such a finding is consistent with the previous demonstration that this site is required for full activation of p56lck by mutation of tyrosine 505. Strikingly, deletion of the noncatalytic Src homology domain 2, but not of the Src homology domain 3, markedly reduced the improvement of TCR-induced tyrosine protein phosphorylation by F505 Lck. Additional studies revealed that all the mutations tested, including deletion of the Src homology 3 region, abrogated the enhancement of antigen-triggered interleukin-2 production by F505 p56lck, thus implying more stringent requirements for augmentation of antigen responsiveness by F505 Lck. Finally, it was also observed that expression of F505 p56lck greatly increased TCR-induced tyrosine phosphorylation of phospholipase C-gamma 1, raising the possibility that phospholipase C-gamma 1 may be a substrate for p56lck in T lymphocytes. Our results indicate that p56lck regulates T-cell antigen receptor signalling through a complex process requiring multiple distinct structural domains of the protein.  相似文献   

14.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

15.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

16.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

17.
Protein tyrosine kinases play fundamental roles in the transduction of signals that regulate cell growth, differentiation, and functional responses to a diversity of external stimuli. It is therefore likely that understanding protein tyrosine kinase activity in NK cells will be crucial in further defining the intracellular regulation of their unique and specialized functions. We investigated the role of protein tyrosine phosphorylation in receptor-mediated signal transduction using stimuli known to play major roles in regulating NK cell activation. Immunoblot analyses with antiphosphotyrosine antibodies demonstrated that IL-2, a potent stimulus for NK cell proliferation and an agent that enhances NK cytotoxic function, induced the tyrosine phosphorylation of at least eight proteins in clonal CD16+/CD3-human NK cells. In contrast, IL-4, which modulates NK cell function without inducing proliferation, had no apparent effect on protein tyrosine phosphorylation. Because protein kinase C (PKC) activation plays a prominent, yet distinct role in NK cell-mediated cytolytic reactions, we next investigated whether PKC activation affects NK cell protein tyrosine phosphorylation. Surprisingly, PKC-activating agents, including the phorbol esters 12-O-tetradecanoylphorbol-13-acetate and 4 beta-phorbol 12, 13-didecanoate, as well as the synthetic diacylglycerol,1-oleoyl-2-acetylglycerol, also induced the tyrosine phosphorylation of a distinct set of proteins. The 4 beta-phorbol 12,13-didecanoate homolog, 4 alpha-phorbol 12,13-didecanoate, which does not activate PKC, also failed to induce protein tyrosine phosphorylation. Further, the PKC inhibitor, 1-O-hexadecyl-2-O-methylglycerol blocked tyrosine phosphorylation induced by 1-oleoyl-2-acetylglycerol. In subsequent studies, both CD8+ and CD8- NK clones were found to express the src-family tyrosine kinase, p56lck, which was detected by immunoblot analysis with anti-p56lck antiserum. In both types of clonal NK cell lines, IL-2 and 12-O-tetradecanoyl-phorbol appeared to stimulate the differential phosphorylation of p56lck as evidenced by the appearance of higher molecular mass isoforms on SDS-polyacrylamide gels. Thus, our results identify and characterize a potential role for tyrosine phosphorylation and for the lymphocyte-specific tyrosine kinase p56lck in the signaling events that regulate NK cell activation.  相似文献   

18.
We have recently reported that tyrosine kinase, p56(lck) regulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through tyrosine phosphorylation of IkappaBalpha following hypoxia/reoxygenation (Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 52598-52612). However, the role of hypoxia/reoxygenation (H/R) on ERK1/2-mediated uPA secretion and cell motility and the involvement of p56(lck) and EGF receptor in these processes in breast cancer cells is not well defined. We provide here evidence that H/R induces Lck kinase activity and Lck-dependent tyrosine phosphorylation of EGF receptor in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. H/R also stimulates MEK-1 and ERK1/2 phosphorylations, and H/R-induced phosphorylations were suppressed by the dominant negative form of Lck (DN Lck, K273R) as well as pharmacological inhibitors of EGF receptor and Lck indicating that EGF receptors and Lck are involved in these processes. Transfection of these cells with wild type Lck or Lck F505 (Y505F) but not with Lck F394 (Y394F) induced phosphorylations of EGF receptor followed by MEK-1 and ERK1/2, suggesting that Lck is upstream of EGF receptor and Tyr-394 of Lck is crucial for these processes. H/R also induced uPA secretion and cell motility in these cells. DN Lck and inhibitors of Lck, EGF receptor, and MEK-1 suppressed H/R-induced uPA secretion and cell motility. To our knowledge, this is the first report that p56(lck) in presence of H/R regulates MEK-1-dependent ERK1/2 phosphorylation and uPA secretion through tyrosine phosphorylation of EGF receptor, and it further demonstrates that all of these signaling molecules ultimately control the motility of breast cancer cells.  相似文献   

19.
Epstein-Barr virus (EBV) exposure of human B lymphocytes induces rapid, Ca(2+)-dependent tyrosine phosphorylation of two cytosolic proteins, one likely the CD21 EBV receptor and another unknown species of 55-60 kDa. We now identify the latter protein as the tyrosine kinase lck (p56lck). In T cells many activation events reduce the high constitutive p56lck expression levels typical for that lineage, and they induce the appearance of a 60-kDa lck species. We now demonstrate that in B cells exposed to EBV the at best low constitutive p56lck expression levels are rapidly and transiently up-regulated without generation of 60-kDa lck. lck-specific antisense oligonucleotides block p56lck induction and prevent subsequent B cell activation and immortalization whereas B cell activation by nononcogenic agents was unaffected. We propose that p56lck superinduction is a transformation prerequisite which signals entry into the oncogenic growth transformation process.  相似文献   

20.
Using antibodies directed against p56lck, we have identified a 115 kDa protein (p115) that is specifically immunoprecipitated with p56lck from whole cell lysates. The p56lck/p115 complex is stable in the presence of nonionic detergents. p115 becomes phosphorylated on tyrosine residues in p56lck immune-complex kinase assays. Treatment of whole cells with 12-O-tetradecanoyl phorbol-13-acetate decreases the subsequent tyrosine phosphorylation of p115 in immune-complex kinase assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号