首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present work was to make amperometric immunosensors based on the principle of enzyme-linked immunosorbent assay (ELISA). For this purpose, screen-printed electrodes (SPEs) were fabricated using various carbon inks (commercially available inks Gwent, Acheson, Eltecks and two homemade inks PSG & PVCG) to determine the best ink in realizing immunosensors. Amperometric immunosensors made by different carbon inks were compared with standard ELISA in terms of total assay time, amount of biological materials used and sensitivity of detection. A model system containing rabbit anti-mouse immunoglobulin G (RαMIgG) as the capturing antibody, mouse IgG (MIgG) as antigen and alkaline phosphatase conjugated RαMIgG as revealing antibody was used. In these studies, 1-naphthyl phosphate was used as substrate. The experiments done include electrochemical characterization of electrodes, optimization of dilutions of antibodies, immobilization of antibody on the electrode were carried out. The minimum detection limit for the best results of MIgG determination were obtained on screen-printed electrode made by Gwent carbon ink and PSG carbon ink, with a detection limit of 1.0 and 2.0 ng/ml respectively. The time required for detection of mouse IgG was 40 min for SPEs. By using the conventional spectrophotometric method (ELISA method), the minimum detection limit for the MIgG (antigen) detection was 50 ng/ml and the time required for analysis was found to be 140 min.  相似文献   

2.
A novel analytical immunosensor array, based on a microtiter plate coupled to a multichannel electrochemical detection (MED) system using the intermittent pulse amperometry (IPA) technique, is proposed for the detection of aflatoxin B1 (AFB1). In the present work, the electrochemical behaviour and electroanalytical performance of the thick-film carbon sensors (also designated as screen-printed electrodes) incorporated in the multichannel electrochemical plate were first evaluated. Then the 96-well screen-printed microplate was modified in accord with a competitive indirect enzyme-linked immunoassay (ELISA) format for aflatoxin B1 detection. The measurements were performed using both spectrophotometric and electrochemical procedures and the results of the calibration curves, detection limit (LOD), sensitivity and reproducibility of the respective assay systems were evaluated. The immunoassay was then applied for analysis of corn samples spiked with AFB1 before and after the extraction treatment, in order to study the extraction efficiency and the matrix effect, respectively. These studies have shown that using this system, AFB1 can be measured at a level of 30 pg/mL and with a working range between 0.05 and 2 ng/mL. Good recoveries (103+/-8%) were obtained, demonstrating the suitability of the proposed assay for accurate determination of the AFB1 concentration in corn samples. The specificity of the assay was assessed by studying the cross-reactivity of PAb relative to AFB1. The results indicated that the PAb could readily distinguish AFB1 from other aflatoxins, with the exception for AFG1.  相似文献   

3.
A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and N-3-oxo-dodecanoyl-l-HomoSerineLactone (HSL), relevant in bacterial quorum sensing, is detected using a competition assay. Detection is performed with gold screen-printed electrodes modified with a specific thiolated antibody. Detection is achieved in less than 1h straight from mock wound fluid without any extensive sample preparation steps. The limits of detection of 3.3 pM for TREM-1, 1.1 nM for MMP-9 and 1.4 nM for HSL are either near or below the threshold required to indicate infection. A relatively large dynamic range for sensor response is also found, consistent with interaction between neighbouring antibody-antigen complexes in the close-packed surface layer. Together, these three novel electrochemical immunosensors demonstrate viable multi-parameter sensing with the required sensitivity for rapid wound infection detection directly from a clinically relevant specimen.  相似文献   

4.
Liu G  Chen H  Peng H  Song S  Gao J  Lu J  Ding M  Li L  Ren S  Zou Z  Fan C 《Biosensors & bioelectronics》2011,28(1):308-313
Carbon nanotubes have shown their unique advantages of mechanical, chemical and electronic properties in bioanalysis. We herein report a new method to efficiently and reproducibly prepare multi-walled carbon nanotubes (MWNTs)-protein sensing layers for electrochemical immunosensors. This method employs centrifugation to prepare a conjugate of MWNTs and goat anti mouse-immunoglobulin G (IgG) (secondary antibody). The conjugates were then deposited on screen-printed electrodes to form a nanostructured layer (MWNT-I layer). CLB monoclonal antibody was assembled through its binding to the secondary antibody. The MWNT-I layer-based electrodes were used for rapid and sensitive amperometric immunosensing detection of clenbuterol (CLB) in swine urine samples. Horseradish peroxidase-coupled CLB (CLB-HRP) competed with free CLB in the samples to bind the monoclonal antibody. It has shown significantly higher sensitivity and better reproducibility than the chemical conjugation method. This MWNT-based immunosensor is highly sensitive, leading to a limit of detection of 0.1 ng/mL within a rapid assay time of 16 min. Its sensitivity is at least 1 order of magnitude higher than that of a normal immunosensor (without MWNTs). The sensing device is portable with disposable screen-printed electrode, satisfactorily meeting the requirements for field detection of food security-related species.  相似文献   

5.
Electrochemical immunosensors based on a competitive indirect enzyme-linked immunosorbent assay (ciELISA) and an enzymatic recycling system were developed for the detection of okadaic acid (OA). OA-ovalbumin (OA-OVA) conjugate was immobilised on screen-printed electrodes (SPEs) and competition of a newly generated monoclonal antibody (MAb) for free and immobilised OA was subsequently performed. Secondary antibodies labelled with alkaline phosphatase (ALP) or horseradish peroxidase (HRP) were used for signal generation. Experimental parameters were firstly optimised by colorimetric ELISA on microtiter wells and on SPEs. The ELISA system was then tested by amperometry at +300 mV vs. Ag/AgCl (detection of p-aminophenol produced by the reaction of p-aminophenyl phosphate with ALP) or -200 mV vs. Ag/AgCl (detection of 5-methyl-phenazinium methyl sulfate, redox mediator in the HRP bioelectrocatalysis). The limits of detection (LODs) with standard solutions were 1.07 and 1.98 microgL(-1) when using ALP and HRP labels, respectively. An electrochemical signal amplification system based on diaphorase (DI) recycling was integrated into the ALP-based immunosensor, decreasing the LOD to 0.03 microgL(-1) and enlarging the working range by two orders of magnitude. Preliminary results with mussel and oyster extracts were obtained and compared with the colorimetric immunoassay, the colorimetric protein phosphatase inhibition assay (PPIA) and LC-MS/MS.  相似文献   

6.
In this work, the direct electrochemical determination of poly-histidine tagged proteins using immunosensor based on anti-His (C-term) antibody immobilized on gold electrodes modified with 1,6-hexanedithiol, gold colloid particles or gold nanorods is described. The recombinant histidine-tagged silk proteinase inhibitor protein (rSPI2-His(6)) expressed in Pichia system selected as antigen for this immonosensor. An electrochemical impedance spectroscopy was used as label free detection technique for immune conjugation. The gold nanorods modified electrode layer showed better analytical response than gold nano particles. The linear calibration range was observed between 10pg/ml and 1ng/ml with limit of detection 5pg/ml (S/N=3). Up to four successive assay cycles with retentive sensitivity were achieved for the immunosensors regenerated with 0.2M glycine-HCl buffer, pH 2.8. The performance of this immnosensor were compared with immuoblotting techniques.  相似文献   

7.
The construction of an electrochemical immunosensor coupled to differential pulse voltammetry (DPV) for the detection of domoic acid (DA), a neurotoxic aminoacid responsible for the human syndrome known as "Amnesic Shellfish Poisoning" (ASP), is proposed here. The method involves the use of disposable screen-printed electrodes (SPEs) for the immunosensor development based on a "competitive indirect test". Domoic acid conjugated to bovine serum albumin (BSA-DA) was coated onto the working electrode of the SPE, followed by incubation with sample (or standard toxin) and anti-DA antibody. An anti-goat IgG-alkaline phosphatase (AP) conjugate was used for signal generation. A spectrophotometric enzyme-linked immunosorbent assay (ELISA) was used in a preliminary phase of development, prior to transferring the assay to the SPEs. Results showed a detection limit equal to 5 ng/ml of toxin. The electrochemical system is simple and cost-effective due to the disposable nature of the SPEs, and the analysis time is 150 min, shorter than that for the spectrophotometric method. The suitability of the assay for DA quantification in mussels was also evaluated. Samples were spiked with DA before and after the sample treatment to study the extraction efficiency and the matrix effect, respectively. After treatment, samples were analysed using a 1:250 v/v dilution in PBS-M (phosphate saline buffer pH 7.4 + CH3OH 10%) to minimise the matrix effect and allow for the detection of 20 microg/g of DA in mussel tissue. This represents the maximum acceptable limit defined by the Food and Drug Administration [Compliance Programme 7303.842. Guidance Levels, Table 3, p. 248, http://www.fda.org]. The optimised ELISA systems were then used, in parallel with a conventional HPLC method, to detect and confirm DA in shellfish extract in order to verify the performance of the electrochemical system. Very good recoveries were obtained, demonstrating the suitability of the proposed assay for accurate determination of the DA concentration in mussel samples.  相似文献   

8.
Aflatoxins are potential food pollutants produced by fungi. One of important toxins is aflatoxin M1 (AFM1). A great deal of concern is associated with AFM1 toxicity. In the present study, an innovative electrochemical interface for quantitation of AFM1 based on ternary signal amplification strategy was fabricated. In this work, silver nanoparticles was electrodeposited onto green and biocompatible nanocomposite containing α‐cyclodextrin as conductive matrix and graphene quantum dots as amplification element. Therefore, a multilayer film based on α‐cyclodextrin, graphene quantum dots, and silver nanoparticles was exploited to develop a highly sensitive electrochemical sensor for detection of AFM1. Fully electrochemical methodology was used to prepare a transducer on a glassy carbon electrode, which provided a high surface area toward sensitive detection of AFM1. The surface morphology of electrode surface was characterized by high‐resolution field emission scanning electron microscope. The proposed sensing platform provides a simple tool for AFM1 detection. Under optimized condition, the calibration curve for AFM1 concentration was linear in 0.015mM to 25mM with low limit of quantification of 2μM. The practical analytical utility of the modified electrode was illustrated by determination of AFM1 in unprocessed milk samples.  相似文献   

9.
A disposable two-throughput immunosensor array was proposed for simultaneous electrochemical determination of tumor markers. The low-cost immunosensor array was fabricated simply using cellulose acetate membrane to co-immobilize thionine as a mediator and two kinds of antigens on two carbon electrodes of a screen-printed chip, respectively. With two simultaneous competitive immunoreactions the corresponding horseradish peroxidase (HRP) labeled antibodies were captured on the membranes, respectively, on which the immobilized thionine shuttled electrons between HRP and the electrodes for enzymatic reduction of H2O2 to produce detectable signals. The electrochemical and electronic cross-talks between the electrodes could be avoided, which was beneficial to the miniaturization of the array without considering the distance between immunosensors. Under optimal conditions the immunosensor array could be used for fast simultaneous electrochemical detection of CA 19-9 and CA 125 with the limits of detection of 0.2 and 0.4 U/ml, respectively. The serum samples from clinic were assayed with the proposed method and the results were in acceptable agreement with the reference values. The proposed method for preparation of immunosensor array could be conveniently used for fabrication of disposable electrochemical biochip with high throughput and possessed the potential of mass production and commercialization.  相似文献   

10.
The presence of cyanobacterial toxins in water and algae pose a health hazard for animals and humans, due to their tumour-promoting activity and carcinogen effects. The use of simple, rapid and reliable tools for routine analysis is becoming a necessity. With this purpose, our group has developed two electrochemical immunosensors for the detection of microcystin-LR (MC-LR) based on the affinity between this cyanotoxin and the corresponding monoclonal and polyclonal antibodies. A competitive direct enzyme-linked immunosorbent assays (ELISAs) was designed and, after validation of the approach on microtiter wells, screen-printed graphite electrodes were used as supports. Colorimetry was used to optimise the experimental parameters and to compare the performance of monoclonal and polyclonal antibodies. Afterwards, electrochemical measurements were performed at -200 mV (versus Ag/AgCl) using 5-methyl-phenazinium methyl sulfate (MPMS) as mediator for horseradish peroxidase (HRP), the enzymatic label of the competitor. The IC(50) values were 0.10 and 1.73 microgL(-1) for MAb and PAb, respectively. Whereas Mab provided higher sensitivities, the reproducibility was better when using PAb. The developed amperometric immunosensors were applied to the analysis of cyanobacterial samples from the Tarn River (Midi-Pyrénées, France) and the presence of MC was confirmed by the colorimetric protein phosphatase inhibition (PPI) assay and high performance liquid chromatography (HPLC). The limits of detection attained from the calibration curves and the results obtained for the real samples demonstrate the potential use of the immunosensors as screening tools for routine use in the assessment of water quality and the control of toxins in algae.  相似文献   

11.
This work describes the development of an electrochemical, recombinant Fab fragment-based immunosensor for the detection of testosterone in bovine urine. The sensor comprised of a testosterone conjugate on the surface of screen-printed electrodes, and recognition followed by an anti-testosterone Fab fragment. The use of an IgG-horseradish peroxidase conjugate determined the degree of competition. Chronoamperometry at a potential of +100 mV, was chosen to reductively measure the product of the catalysis of 3,3',5,5'-tetramethylbenzidine catalysis. ELISA was primarily used to investigate the assay system, prior to transferring to SPEs. The final Fab-based sensor exhibited the linear range of 300-40,000 pg/ml with limit of detection of 90+/-13 pg/ml. Furthermore, the developed Fab sensor allowed for the determination of testosterone in bovine urine directly after dilution, omitting the necessity of extraction and hydrolysis. Comparison of administrated bovine urine samples between the developed Fab sensor and GC-MS data showed quantitative or semi-quantitative results and enabled identification of suspicious samples for further extensive analysis by established analytical techniques. With simple sample preparation, low limit of detection, and good repeatability, the proposed method can offer alternative advantages as a primary screening tool for meat quality control.  相似文献   

12.
A disposable electrochemical immunosensor has been developed for the determination of phenyl urea herbicide-diuron using a low cost laser ablated gold electrodes (LC-LAGE) fabricated on polystyrene substrate. The electrodes were electrochemically deposited with prussian blue-gold nanoparticle (PB-GNP) film, and a competitive inhibition immunoassay was performed on LC-LAGE by using a specific hapten-protein conjugate. The binding of available diuron specific antibody on conjugate coated electrode was detected using alkaline phosphatase rabbit anti-IgG antibody. The addition of 1-naphthyl phosphate substrate resulted in the production of electrochemically active product, 1-naphthol, which was monitored using square wave voltammetry technique. The assay exhibited an excellent sensitivity and specificity showing the dynamic response range between 1 ppt and 10 ppm for diuron with detection limit around 1 ppt. This study provides insight into development of a rapid and high-throughput screening of pesticides in environmental samples at a very low cost.  相似文献   

13.
Carbon nanotube/polysulfone screen-printed electrochemical immunosensor   总被引:1,自引:0,他引:1  
The simple and efficient method for preparing sensitive carbon nanotube/polysulfone/RIgG immunocomposite is described. The membrane of the modified disposable screen-printed electrochemical immunosensor is based on phase inversion method. Carbon nanotube/polysulfone membrane acts both as reservoir of immunological material and transducer while offering high surface area, high toughness and mechanical flexibility. The comparison with graphite/polysulfone/RIgG immunosensors shows a much higher sensitivity for those prepared with carbon nanotubes coupled with polysulfone (PSf). The membrane was characterized by scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX), laser profilometer and by atomic force microscopy (AFM). The purity of the materials was evaluated by thermogravimetric analysis (TGA). The roughness value is doubled when MWCNTs are used instead of graphite into the PSf membranes and the incorporation of antibodies enhances the dispersion of the carbon with the polymeric membrane reducing the roughness in all cases. This biosensor was based on the competitive assay between free and labelled anti-RIgG for the available binding sites of immobilized rabbit IgG (RIgG). The RIgG was incorporated into the polysulfone membrane by a phase inversion method. Horse radish peroxidase (HRP) enzyme was used as label and hydroquinone as mediator. The detection limit for competitive assay was determined to be 1.66 microg/ml. the linear range of anti-RIgG from 2 to 5 microg/ml and the C(50) was found at 3.56 microg/ml. The sensitivity is five times higher for MWCNT than for graphite electrodes, showing lower unspecific adsorption.  相似文献   

14.
Aflatoxin is a liver carcinogen, and rapid, inexpensive methods to detect its urinary biomarkers are needed. We used a commercial enzyme-linked immuno-sorbent assay (ELISA) for aflatoxin M1 in urine (Helica Biosystems) to test 52 Haitian samples. Using this ELISA, we detected traces above the limit of detection (0.2?ng/ml urine) but below the limit of quantitation (0.4?ng/ml) in 14 samples. Liquid chromatography of all 52 Haitian urine samples revealed that only 11 had quantifiable AFM1 (mean: 29.5?pg/ml, standard error: 10.8, range: 2.94–96.5?pg/ml). The Helica ELISA may have detected forms of aflatoxin other than AFM1 in the Haitian samples, or matrix enhancement may have affected results at low AFM1 concentrations. This ELISA may serve as an initial, qualitative indicator of aflatoxin exposure for epidemiological purposes. But this method’s utility as a precise and specific indicator of AFM1 concentrations will require additional refinement and validation.  相似文献   

15.
An amperometric immunosensor for polycyclic aromatic hydrocarbons (PAHs) was developed. The immunosensor was based on disposable screen-printed carbon electrodes. The coating antigen used was phenanthrene-9-carboxaldehyde coupled to bovine serum albumin (BSA) via adipic acid dihydrazide. Antibodies were monoclonal mouse anti-phenanthrene. The enzyme alkaline phosphatase (AP) was used in combination with the substrate p-aminophenyl phosphate (pAPP) for detection at +300 mV (vs. Ag/AgCl). Various assay types were compared. Good results were achieved with an indirect co-exposure competition assay with a LOD of 0.8 ng/ml (800 ppt) and an IC(50) of 7.1 ng/ml (7.1 ppb) for phenanthrene. An indirect competition assay could detect phenanthrene with a LOD of 2 ng/ml (IC(50): 15 ng/ml) and an indirect displacement assay with a LOD of 2 ng/ml (IC(50): 11 ng/ml) at a 5 microl surface coating of 8.8 microg/ml phenanthrene-BSA conjugate. A coating concentration of 2.2 microg/ml allowed detection with a LOD of 0.25 ng/ml (250 ppt) with the indirect competition assay. The influence of the coating concentration on the sensor performance was investigated. Cross-reactivities were tested for 16 important PAHs. Anthracene and chrysene showed strong cross-reactivity, whereas benzo[g,h,i]perylene and dibenzo[a,h]anthracene showed no cross-reactivity.  相似文献   

16.
Fiber-optic immunosensor for mycotoxins   总被引:1,自引:0,他引:1  
Evanescent wave-based fiber-optic immunosensors were studied for the detection of fumonisins and aflatoxins in maize. Two formats, competitive and non-competitive, were used. A competitive format was used to measure fumonisin B1 (FB1) in both spiked and naturally contaminated maize samples. Fumonisin monoclonal antibodies were covalently coupled to an optical fiber and the competition between FB1 and FB1 labeled with fluorescein (FB1-FITC) for the limited number of binding sites on the fiber was assessed. The signal generated in the assay was inversely proportional to the FB1 concentration. For samples, the concentration causing an inhibition of binding by 50% (IC50) was dependent upon the clean-up procedure used. Simple dilution of methanolic maize extracts yielded an assay with an IC50 equivalent to 25 microg FB1 g(-1) maize with a limit of detection of 3.2 microg g(-1) maize. Affinity column clean-up yielded an assay with an IC50 equivalent to 5 microg FB1 g(-1) maize (limit of detection 0.4 microg FB1 g(-1)). An HPLC method and the immunosensor method agreed well for naturally contaminated maize samples except when large amounts of other fumonisins that cross-react with the immunosensor were present. The second sensor format, for the mycotoxin aflatoxin B1 (AFB1), was a non-competitive assay using the native fluorescence of this mycotoxin. Because the fluorescence of AFB1 itself was detected, the response of the sensor was directly proportional to the toxin concentration. The sensor, while capable of detecting as little as 2 ng ml(-1) of AFB1 in solution was technically not an immunosensor, since the attachment of aflatoxin specific antibodies was not required. Sensors of the formats described have the potential to rapidly screen individual maize samples but require coupling with a clean-up technique to be truly effective.  相似文献   

17.
We are reporting fabrication and characterization of electrochemical sucrose biosensor using ultra-microelectrode (UME) for the detection of heavy metal ions (Hg(II), Ag(I), Pb(II) and Cd(II)). The working UME, with 25 microm diameter, was modified with invertase (INV, EC: 3.2.1.26) and glucose oxidase (GOD, EC: 1.1.3.4) entrapped in agarose-guar gum. The hydrophilic character of the agarose-guar gum composite matrix was checked by water contact angle measurement. The atomic force microscopy (AFM) images of the membranes showed proper confinement of both the enzymes during co-immobilization. The dynamic range for sucrose biosensor was achieved in the range of 1 x 10(-10) to 1 x 10(-7)M with lower detection limit 1 x 10(-10)M at pH 5.5 with 9 cycles of reuse. The spectrophotometric and electrochemical studies showed linear relationship between concentration of heavy metal ions and degree of inhibition of invertase. The toxicity sequence for invertase using both methods was observed as Hg(2+)>Pb(2+)>Ag(+)>Cd(2+). The dynamic linear range for mercury using electrochemical biosensor was observed in the range of 5 x 10(-10) to 12.5 x 10(-10)M for sucrose. The lower detection limit for the fabricated biosensor was found to be 5 x 10(-10)M. The reliability of the electrochemical biosensor was conformed by testing the spike samples and the results were comparable with the conventional photometric DNSA method.  相似文献   

18.
Nowadays, β(2)-agonists are abused illegally as "lean meat agents" for food-producing animals, and cause increasing food-safety accidents in some countries. Due to their hazard to the human health, "lean meat agents" are banned in most countries and required to be routinely monitored. We herein report a disposable electrochemiluminescent immunosensors array for near-simultaneous assay of multiple β(2)-agonist residues in swine urine, by using ractopamine and salbutamol as the models. In this investigation, a screen-printed carbon electrodes array was assembled and acted as the substrate of the immunosensors array. Then the immunosensors array was constructed by site-selectively immobilizing the antigens of ractopamine and salbutamol on the working electrodes of array. After the competitive immuno-binding, with the aid of a homemade single-pore-four-throw switch, the electrochemiluminescent signals of the two β(2)-agonists were sequentially detected using a non-array detector. The limits of detection for ractopamine and salbutamol were 8.5 and 17pg/mL, respectively, which were much lower than those of the most previous reports. Compared with other routine methods based on chromatography and ELISA, this method is more suitable for screening of multiple β(2)-agonists in quantities of samples, owing to its merits of low cost, user-friendliness and high throughput, and shows great promise in food safety and agonist surveillance.  相似文献   

19.
The increasing concern about ochratoxin A (OTA) contamination of different food and feedstuffs demands high-performing detection techniques for quality assessment. Two indirect competitive enzyme-linked immunosorbent assay (ELISA) strategies were investigated for the development of OTA electrochemical immunosensors based on different OTA immobilisation procedures. Immunosensors based on avidin/biotin-OTA showed enhanced performance characteristics compared to those based on the adsorption of bovine serum albumin (BSA)-OTA conjugate. Performance of polyclonal (PAb) and monoclonal (MAb) antibodies against OTA was compared, showing at least one-order of magnitude lower IC(50) values when working with MAb. Alkaline phosphatase (ALP)- and horseradish peroxidase (HRP)-labelled secondary antibodies were evaluated. Both conjugates led to similar results when working with OTA standard solutions in buffer. However, whereas electroactive interferences present in spiked wine samples did not affect HRP-labelled immunosensors (4% slope deviation), they were likely oxidised at 0.225 V versus Ag/AgCl, the working potential for ALP-labelled immunosensors (25% slope deviation). Considering 80% of antibody binding as the limit of detection, values of 0.7 and 0.3 ng/mL for HRP- and ALP-labelled immunosensors respectively, validate these immunosensors as useful screening tools to assess OTA levels in wine.  相似文献   

20.
The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号