首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wideman CH  Murphy HM  Nadzam GR 《Peptides》2000,21(6):811-816
Vasopressin-containing Long-Evans and vasopressin-deficient Brattleboro rats were maintained in individual cages while telemetered activity (AC) and body temperature (BT) data were collected. Rats were initially exposed to a 12 h/12-h light/dark cycle (photic zeitgeber) and were allowed ad-libitum access to food and water. Daily feeding, care, and handling (nonphotic zeitgebers) occurred at the beginning of the second hour of the dark cycle. After a 14-day habituation period, rats were subjected to continuous light (LL) or dark (DD) and nonphotic cues were presented irregularly. During the habituation period, both strains exhibited clear 24-h circadian rhythms of AC and BT. In LL or DD, photic cues were removed and nonphotic cues were presented irregularly. There was a shift in the rhythm for Long-Evans animals to 26 h for both AC and BT in LL and 24.6 h in DD. Feeding, care, and handling were seen as minor artifact. In Brattleboro rats, although there were robust 26-h and 24.6-h circadian rhythms of AC in the LL and DD, respectively, BT data were inconsistent and showed sporadic fluctuations. In the BT rhythm of Brattleboro animals, strong peaks were associated with feeding, care, and handling times and trough periods were characterized by a dramatic drop in temperature. This experiment demonstrates that AC and BT are controlled by separate oscillators. In addition, the importance of vasopressinergic fibers in the control of circadian rhythms of BT is evidenced by the loss of circadian rhythms in animals lacking these functional fibers when exposed to free-running paradigms where there is no entrainment of photic or nonphotic oscillators.  相似文献   

2.
Brainstem monoaminergic projections to the suprachiasmatic nucleus (SCN), and to the intergeniculate leaflet (IGL), appear to modulate both photic and non-photic effects on the circadian system. Recent work in this laboratory has concentrated on the role of noradrenaline in the regulation of circadian period and phase. Previously, this lab has shown that chronic administration of the alpha2 adrenergic agonist, clonidine, to rats maintained in constant light (LL) shortens free-running circadian period and promotes dissociation of rhythmicity, while acute clonidine administration to hamsters produces phase shifts similar to those observed with photic stimuli. These results suggest an interaction between clonidine and photic input on circadian rhythmicity, and so the present study was designed to examine systematically the relationship between chronic clonidine administration and photic input in both rats and hamsters. In DD and low intensity LL, clonidine did not alter free-running circadian wheel-running rhythms of rats, but under moderate to high intensity LL, clonidine significantly reduced the period-lengthening effects of LL. Chronic clonidine administration also altered several aspects of circadian phase in hamsters; phase shifts in response to light pulses of varying intensity at CT 19 were reduced; steady-state entrainment phase under a 24-h light-dark cycle (LD 14:10)was delayed; and synchronization to a 23-h light-dark cycle (LD 13:10) was impaired. Clonidine appeared to have little effect on free-running period of hamsters, but a trend towards dissociation of rhythmicity under LL was observed. These effects may reflect an action of clonidine at the photic input pathways to the circadian system, or directly at the circadian pacemaker, since alpha 2 adrenoceptors have been localized both in the suprachiasmatic nucleus (SCN) and in several of its projection areas. As both clinical and experimental studies suggest that clonidine may have depressogenic properties, chronic administration of clonidine to rodents may provide an animal model of the alterations in circadian rhythmicity seen in human depression.  相似文献   

3.
Brainstem monoaminergic projections to the suprachiasmatic nucleus (SCN), and to the intergeniculate leaflet (IGL), appear to modulate both photic and non-photic effects on the circadian system. Recent work in this laboratory has concentrated on the role of noradrenaline in the regulation of circadian period and phase. Previously, this lab has shown that chronic administration of the alpha2 adrenergic agonist, clonidine, to rats maintained in constant light (LL) shortens free-running circadian period and promotes dissociation of rhythmicity, while acute clonidine administration to hamsters produces phase shifts similar to those observed with photic stimuli. These results suggest an interaction between clonidine and photic input on circadian rhythmicity, and so the present study was designed to examine systematically the relationship between chronic clonidine administration and photic input in both rats and hamsters. In DD and low intensity LL, clonidine did not alter free-running circadian wheel-running rhythms of rats, but under moderate to high intensity LL, clonidine significantly reduced the period-lengthening effects of LL. Chronic clonidine administration also altered several aspects of circadian phase in hamsters; phase shifts in response to light pulses of varying intensity at CT 19 were reduced; steady-state entrainment phase under a 24-h light-dark cycle (LD 14:10)was delayed; and synchronization to a 23-h light-dark cycle (LD 13:10) was impaired. Clonidine appeared to have little effect on free-running period of hamsters, but a trend towards dissociation of rhythmicity under LL was observed. These effects may reflect an action of clonidine at the photic input pathways to the circadian system, or directly at the circadian pacemaker, since alpha 2 adrenoceptors have been localized both in the suprachiasmatic nucleus (SCN) and in several of its projection areas. As both clinical and experimental studies suggest that clonidine may have depressogenic properties, chronic administration of clonidine to rodents may provide an animal model of the alterations in circadian rhythmicity seen in human depression.  相似文献   

4.
Studies on rodents have emphasized that removal of the olfactory bulbs modulates circadian rhythmicity. Using telemetric recordings of both body temperature (Tb) and locomotor activity (LA) in a male nocturnal primate, the gray mouse lemur, the authors investigated the effects of olfactory bulbectomy on (1) the circadian periods of Tb and LA in constant dim light condition, and (2) photic re-entrainment rates of circadian rhythms following 6-h phase shifts of entrained light-dark cycle (LD 12:12). Under free-running condition, bulbectomized males had significantly shorter circadian periods of Tb and LA rhythms than those of control males. However, the profiles of Tb rhythms, characterized by a phase of hypothermia at the beginning of the subjective day, and Tb parameters were not modified by olfactory bulbectomy. Under a light-dark cycle, olfactory bulbectomy significantly modified the expression of daily hypothermia, especially by an increase in the latency to reach minimal daily Tb, suggesting a delayed response to induction of daily hypothermia by light onset. Reentrainment rates following both a 6-h phase advance and a 6-h phase delay of entrained LD were also delayed in bulbectomized males. Olfactory bulbectomy led to significant fragmentation of locomotor activity and increased locomotor activity levels during the resting period. The shortening of circadian periods in bulbectomized males could partly explain the delayed responses to photic stimuli since in control males, the longer the circadian period, the better the response to light entrainment. This experiment shows for the 1st time that olfactory bulbs can markedly modify the circadian system in a primate.  相似文献   

5.
Circadian function is affected by exposure to altered ambient force environments. Under non-earth gravitational fields, both basic features of circadian rhythms and the expression of the clock responsible for these rhythms are altered. We examined the activity rhythm of the tenebrionid beetle, Trigonoscelis gigas, in conditions of microgravity (microG; spaceflight), earth's gravity (1 G) and 2 G (centrifugation). Data were recorded under a light-dark cycle (LD), constant light (LL), and constant darkness (DD). Free-running period (tau) was significantly affected by both the gravitational field and ambient light intensity. In DD, tau was longer under 2 G than under either 1 G or microG. In addition, tauLL was significantly different from tauDD under microG and 1 G, but not under 2 G.  相似文献   

6.
In the wild type (Canton-S) and period mutant flies of Drosophila melanogaster, we examined the effects of light and temperature on the circadian locomotor rhythm. Under light dark cycles, the wild type and per(S) flies were diurnal at 25 degrees C. However, at 30 degrees C, the daytime activity commonly decreased to form a rather nocturnal pattern, and ultradian rhythms of a 2 approximately 4h period were observed more frequently than at 25 degrees C. The change in activity pattern was more clearly observed in per(0) flies, suggesting that these temperature dependent changes in activity pattern are mainly attributable to the system other than the circadian clock. In a 12h 30 degrees C:12h 25 degrees C temperature cycle (HTLT12:12), per(0) flies were active during the thermophase in constant darkness (DD) but during the cryophase in constant light (LL). The results of experiments with per(0);eya flies suggest that the compound eye is the main source of the photic information for this reversal. Wild type and per(0) flies were synchronized to HTLT12:12 both under LL and DD, while per(S) and per(L) flies were synchronized only in LL. This suggests that the circadian clock is entrainable to the temperature cycle, but the entrainability is reduced in the per(S) and per(L) flies to this particular thermoperiod length, and that temperature cycle forces the clock to move in LL, where the rhythm is believed to be stopped at constant temperature.  相似文献   

7.
The locomotor activities of individual specimens of Uca subcylindrica (Stimpson) collected from semi-arid, supratidal habitats in south Texas and northeastern Mexico were studied in the laboratory using periodogram analysis. When crabs were placed under constant darkness (DD) or constant illumination (LL), free-running circadian rhythms were observed in the activity recordings. The locomotor activity of strongly rhythmic crabs in LL has an average period length of 24.4 h. Crabs held in DD express motor rhythms with periods of approximately 24.0 h. In LL the most common wave form for activity is unimodal, while under DD it is bimodal. Recordings under natural illumination (NL) revealed that both period length and the time of maximum activity (phasing) varied through the year. During winter months, the crabs are primarily diurnal with peaks in activity occurring between 0900 and 2100 h and possess a circadian rhythm with a 23.9 h period. During summer, crabs were nocturnal with maximal activity between 1300 and 0600 and a circadian period closer to 24.0 h. In these experiments, the rhythmic locomotor activities of U. subcylindrica are best described as “circadian”. This is unusual for a genus known for its expression of circatidal and circalunidian rhythms.  相似文献   

8.
Clock genes Cryptochrome (Cry1) and Cry2 are essential for expression of circadian rhythms in mice under constant darkness (DD). However, circadian rhythms in clock gene Per1 expression or clock protein PER2 are detected in the cultured suprachiasmatic nucleus (SCN) of neonatal Cry1 and Cry2 double deficient (Cry1 -/-/Cry2 -/-) mice. A lack of circadian rhythms in adult Cry1 -/-/Cry2 -/- mice is most likely due to developmentally disorganized cellular coupling of oscillating neurons in the SCN. On the other hand, neonatal rats exposed to constant light (LL) developed a tenable circadian system under prolonged LL which was known to fragment circadian behavioral rhythms. In the present study, Cry1 -/-/Cry2 -/- mice were raised under LL from postnatal day 1 for 7 weeks and subsequently exposed to DD for 3 weeks. Spontaneous movement was monitored continuously after weaning and PER2::LUC was measured in the cultured SCN obtained from mice under prolonged DD. Surprisingly, Chi square periodogram analysis revealed significant circadian rhythms of spontaneous movement in the LL-raised Cry1 -/-/Cry2 -/- mice, but failed to detect the rhythms in Cry1 -/-/Cry2 -/- mice raised under light-dark cycles (LD). By contrast, prolonged LL in adulthood did not rescue the circadian behavioral rhythms in the LD raised Cry1 -/-/Cry2 -/- mice. Visual inspection disclosed two distinct activity components with different periods in behavioral rhythms of the LL-raised Cry1-/-/Cry2-/- mice under DD: one was shorter and the other was longer than 24 hours. The two components repeatedly merged and separated. The patterns resembled the split behavioral rhythms of wild type mice under prolonged LL. In addition, circadian rhythms in PER2::LUC were detected in some of the LL-raised Cry1-/-/Cry2-/- mice under DD. These results indicate that neonatal exposure to LL compensates the CRY double deficiency for the disruption of circadian behavioral rhythms under DD in adulthood.  相似文献   

9.
Abstract. The present experiments were undertaken to explore a role for serotonin (5-hydroxytryptamine, 5-HT) in modulating photic signal transduction in photoreceptors of the blow fly, Calliphora vicina. Injection of p-chlorophenylalanine (pCPA) into the haemolymph appeared to reduce sensitivity to the photic effects of constant ‘bright’ light (LL hyperactivity and circadian arrhythmicity). After drug injection in bright LL, flies continued with a free-running rhythm as in constant darkness (DD) or with a lengthened period τ as in ‘dim’ LL. When 5-HT was injected into flies kept in dim LL, they became hyperactive and arrhythmic as in bright LL. This finding suggests a potential role for serotonin as mediator of circadian changes in the insect visual system including extraretinal photoreceptors.  相似文献   

10.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.  相似文献   

11.
Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the "dynamic phase" of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a "static phase" of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment.  相似文献   

12.
The locomotor activities of individual specimens of Uca subcylindrica (Stimpson) collected from semi-arid, supratidal habitats in south Texas and northeastern Mexico were studied in the laboratory using periodogram analysis. When crabs were placed under constant darkness (DD) or constant illumination (LL), free-running circadian rhythms were observed in the activity recordings. The locomotor activity of strongly rhythmic crabs in LL has an average period length of 24.4 h. Crabs held in DD express motor rhythms with periods of approximately 24.0 h. In LL the most common wave form for activity is unimodal, while under DD it is bimodal. Recordings under natural illumination (NL) revealed that both period length and the time of maximum activity (phasing) varied through the year. During winter months, the crabs are primarily diurnal with peaks in activity occurring between 0900 and 2100 h and possess a circadian rhythm with a 23.9 h period. During summer, crabs were nocturnal with maximal activity between 1300 and 0600 and a circadian period closer to 24.0 h. In these experiments, the rhythmic locomotor activities of U. subcylindrica are best described as “circadian”. This is unusual for a genus known for its expression of circatidal and circalunidian rhythms.  相似文献   

13.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Mammalian circadian organization is believed to derive primarily from circadian oscillators within the hypothalamic suprachiasmatic nuclei (SCN). The SCN drives circadian rhythms of a wide array of functions (e.g., locomotion, body temperature, and several endocrine processes, including the circadian secretion of the pineal hormone melatonin). In contrast to the situation in several species of reptiles and birds, there is an extensive literature reporting little or no effect of pinealectomy on mammalian circadian rhythms. However, recent research has indicated that the SCN and circadian systems of several mammalian species are highly sensitive to exogenous melatonin, raising the possibility that endogenous pineal hormone may provide feedback in the control of overt circadian rhythms. To determine the role of the pineal gland in rat circadian rhythms, the effects of pinealectomy on locomotor rhythms in constant light (LL) and constant darkness (DD) were studied. The results indicated that the circadian rhythms of pinealectomized rats but not sham-operated controls dissociated into multiple ultradian components in LL and recoupled into circadian patterns only after 12-21 days in DD. The data suggest that pineal feedback may modulate sensitivity to light and/or provide coupling among multiple circadian oscillators within the SCN.  相似文献   

15.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   

16.
It has been suggested that two endogenous timekeeping systems, a light-entrainable pacemaker (LEP) and a food-entrainable pacemaker (FEP), control circadian rhythms. To understand the function and interaction between these two mechanisms better, we studied two behavioral circadian rhythmicities, feeding and locomotor activity, in rats exposed to two conflicting zeitgebers, food restriction and light-dark cycles. For this, the food approaches and wheel-running activity of rats kept under light-dark (LD) 12:12, constant darkness (DD), or constant light (LL) conditions and subjected to different scheduled feeding patterns were continuously recorded. To facilitate comparison of the results obtained under the different lighting conditions, the period of the feeding cycles was set in all three cases about Ih less than the light-entrained or free-running circadian rhythms. The results showed that, depending on the lighting conditions, some components of the feeding and wheel-running circadian rhythms could be entrained by food pulses, while others retained their free-running or light-entrained state. Under LD, food pulses had little influence on the light-entrained feeding and loco-motor rhythms. Under DD, relative coordination between free-running and food-associated rhythms may appear. In both cases, the feeding activity associated with the food pulses could be divided into a prominent phase-dependent peak of activity within the period of food availability and another afterward. Wheel-running activity mainly followed the food pulses. Under LL conditions, the food-entrained activity consisted mainly of feeding and wheel-running anticipatory activity. The results provide new evidence that lighting conditions influence the establishment and persistence of food-entrained circadian rhythms in rats. The existence of two coupled pacemakers, LEP and FEP, or a multioscillatory LEP may both explain our experimental results.  相似文献   

17.
It has been suggested that two endogenous timekeeping systems, a light-entrainable pacemaker (LEP) and a food-entrainable pacemaker (FEP), control circadian rhythms. To understand the function and interaction between these two mechanisms better, we studied two behavioral circadian rhythmicities, feeding and locomotor activity, in rats exposed to two conflicting zeitgebers, food restriction and light-dark cycles. For this, the food approaches and wheel-running activity of rats kept under light-dark (LD) 12:12, constant darkness (DD), or constant light (LL) conditions and subjected to different scheduled feeding patterns were continuously recorded. To facilitate comparison of the results obtained under the different lighting conditions, the period of the feeding cycles was set in all three cases about Ih less than the light-entrained or free-running circadian rhythms. The results showed that, depending on the lighting conditions, some components of the feeding and wheel-running circadian rhythms could be entrained by food pulses, while others retained their free-running or light-entrained state. Under LD, food pulses had little influence on the light-entrained feeding and loco-motor rhythms. Under DD, relative coordination between free-running and food-associated rhythms may appear. In both cases, the feeding activity associated with the food pulses could be divided into a prominent phase-dependent peak of activity within the period of food availability and another afterward. Wheel-running activity mainly followed the food pulses. Under LL conditions, the food-entrained activity consisted mainly of feeding and wheel-running anticipatory activity. The results provide new evidence that lighting conditions influence the establishment and persistence of food-entrained circadian rhythms in rats. The existence of two coupled pacemakers, LEP and FEP, or a multioscillatory LEP may both explain our experimental results.  相似文献   

18.
Under controlled laboratory conditions, the locomotor activity rhythms of four species of wrasses (Suezichthys gracilis, Thalassoma cupido, Labroides dimidiatus andCirrhilabrus temminckii) were individually examined using an actograph with infra-red photo-electric switches in a dark room at temperatures of 21.3–24.3°C, for 7 to 14 days. The locomotor activity ofS. gracilis occurred mostly during the light period under a light-dark cycle regimen (LD 12:12; 06:00-18:00 light, 18:00-06:00 dark). The locomotor activity commenced at the beginning of the light period and continued until a little before the beginning of dark period. The diel activity rhythm of this species synchronizes with LD. Under constant illumination (LL) this species shows distinct free-running activity rhythms varying in length from 23 hrs. 39 min. to 23 hrs. 47 min. Therefore,S. gracilis appears to have a circadian rhythm under LL. However, in constant darkness (DD), the activity of this species was greatly suppressed. All the fish showed no activity rhythms in DD conditions. After DD, the fish showed the diel activity rhythm with the resumption of LD, but this activity began shortly after the beginning of light period. The fish required several days to synchronize with the activity in the light period. Therefore,S. gracilis appeared to continue the circadian rhythm under DD. InT. cupido, the locomotor activity commenced somewhat earlier than the beginning of the light period and continued until the beginning of the dark period under LD. The diel activity rhythm of this species synchronizes with LD. Under LL, four of the five specimens of this species tested showed free-running activity rhythms for the first 5 days or longer varying in length from 22 hrs. 54 min. to 23 hrs. 39 min. Although the activity of this species was suppressed under DD, two of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 38 min. to 23 hrs. 50 min. under DD. Therefore, it was ascertained thatT. cupido has a circadian rhythm. InL. dimidiatus, the locomotor activity rhythm under LD resembled that observed inT. cupido. The diel activity rhythm of this species synchronizes with LD. Under LL, four of seven of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 07 min. to 25 hrs. 48 min. Although the activity of this species was suppressed under DD, three of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 36 min. to 23 hrs. 41 min. under DD. Therefore, it was ascertained thatL. dimidiatus has a circadian rhythm. Almost all locomotor activity of C.temminckii occurred during the light period under LD. The diel activity rhythm of this species coincides with LD. Under LL, two of four of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 32 min. to 23 hrs. 45 min. Although the activity of this species was suppressed under DD, one of the four fish showed free-running activity rhythms throughout the experimental period. The length of the free-running period was 23 hrs. 21 min. under DD. Therefore,C. temminckii appeared to have a circadian rhythm. According to field observations,S. gracilis burrows and lies in the sandy bottom whileT. cupido, L. dimidiatus, andC. temminckii hide and rest in spaces among piles of boulders or in crevices of rocks during the night. It seems that the differences in nocturnal behavior among the four species of wrasses mentioned above are closely related to the intensity of endogenous factors in their locomotor activity rhythms.  相似文献   

19.
Several studies have demonstrated a variety of effects of intergeniculate leaflet (IGL) lesions on circadian rhythm regulation. Recent studies have suggested the possibility that certain rhythm functions attributed to the IGL are actually controlled by retinorecipient midbrain nuclei or other brain areas connected to the IGL. The present investigations evaluated whether midbrain lesions previously shown to block the phasic actions of benzodiazepine would also reduce or eliminate the period-lengthening effect of constant light (LL), a function that has been attributed to the IGL. Experiment 1 established that the circadian period of controls lengthened by about 0.57 h when the animals were transferred from constant dark (DD) to LL, but the magnitude of change was attenuated by about 50% in animals with IGL lesions caused by the neurotoxin N-methyl-D-aspartate (NMDA). In experiment 2, controls were compared to groups receiving either NMDA lesions of the pretectum or tectum or knife cuts designed to sever connections between the IGL and more medial retinorecipient nuclei. As in experiment 1, there were no differences between groups with respect to circadian period in DD. However, unlike experiment 1, all groups lengthened period equally in LL (overall mean increase = 0.57 h). Thus, the effect of LL on circadian period appears to be a joint result of photic information arriving at the circadian clock directly from the retinohypothalamic tract and indirectly through the IGL via the geniculohypothalamic tract, without involvement of visual midbrain. The results may have implications for the anatomical basis of Aschoff's rule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号