首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonrandom associations between the sex chromosomes of the brush-tailed possum, Trichosurus vulpecula, were found to be due to association of nucleolar organizer regions (NOR's) on the X and Y chromosomes. NOR association was also observed between an autosome and the X chromosome. These findings, based on silver staining, are in contrast to the report of MURRAY (1977), who observed sex-chromosome association in this animal and indicated that these nonrandom associations may reflect an association between heterochromatic regions during interphase. We observed only two pairs of NOR's per cell in this animal, one autosomal and one on the sex chromosomes, rather than the several such regions observed by MURRAY, who used an N-banding technique. We discuss the problem of nonhomologous chromosome association in mammalian cells as influenced by heterochromatin and NOR's and find little support for nonhomologous chromosome associations at mitotic metaphase due to heterochromatin association.  相似文献   

2.
Using G bands, some homologies between the chromosomes of Cebus apella (CAP) and human chromosomes are difficult to establish. To solve this problem, we analyzed these homologies by fluorescence in situ hybridization using human whole chromosome probes (ZOO-FISH). The results indicated that 1) the human probe for chromosome 2 partially hybridizes with CAP chromosomes 13 and 5, 2) the human probe for chromosome 3 partially hybridizes with CAP chromosomes 18 and 20, 3) the human probe for chromosome 9 partially hybridizes with CAP chromosome 19, and 4) the human probe for chromosome 14 hybridizes with the p-terminal and q-terminal regions of CAP chromosome 6. However, none of the human probes employed hybridized with the heterochromatic regions of CAP chromosomes. For this reason, we characterized the heterochromatic regions of CAP chromosomes and of the chromosomes of Pan troglodytes (PTR), to allow comparison between CAP, PTR, and human chromosomes using in situ digestion of fixed chromosomes with the restriction enzymes AluI, HaeIII, and RsaI and by fluorescent staining with DA/DAPI. The results show that 1) centromeric heterochromatin is heterogeneous in the three species studied and 2) noncentromeric heterochromatin is homogeneous within each of the three species, but is different for each species. Thus, centromeric heterochromatin undergoes a higher degree of variability than noncentromeric heterochromatin.  相似文献   

3.
Pereira LG  de Souza MJ 《Cytobios》2000,103(403):111-119
The constitutive heterochromatin (CH) of Phaeoparia megacephala was studied using C-banding and fluorochrome staining (CMA3, DAPI and acridine orange). The nucleolar organizer regions (NOR) were identified with silver staining. The chromosome complement of this species was 2n = 23, XO in males, and 2n = 24, XX in females. The CH was pericentromeric in all chromosomes. L1, L2, L3 and X chromosomes showed large blocks of CH, while the medium and small chromosomes had small blocks. The staining procedure with acridine orange revealed the same pattern. All the pericentromeric regions showed small blocks of CMA3-positive constitutive heterochromatin (GC-rich regions), while only part of the large C-band positive chromosome segments (L1, L2, L3 and X) were CMA3 positive. This character demonstrates an uncommon heterogeneity of constitutive heterochromatin in P. megacephala. The fluorochrome DAPI did not reveal DAPI-positive regions (AT-rich regions). Silver staining revealed only one pair of medium chromosomes with NOR.  相似文献   

4.
小熊猫染色体异染色质的显示   总被引:4,自引:0,他引:4  
以培养的小熊猫外周淋巴细胞为实验材料,结合C-显带技术及CMA3/DA/DAPI三竽荧光杂色的方法,对小熊猫的染色体组型、C-带带型及CMA3/DA/DAPI荧光带带型进行了研究,发现:(1)经C-显带技术处理,可在小熊猫染色体上呈现出一种极为独特的C-带带型。在多数染色体上可见到丰富的插入C-带及端粒C-带。而着丝区仅显示弱阳性C-带;(2)除着丝粒区外,CMA3诱导的大多数强荧光带纹与C-阳性  相似文献   

5.
Summary Generalized distances between centromeres and between telomeres were statistically analyzed (x 2 tests) in 100 trypsin-banded metaphase figures derived from normal males.Analysis of association tendencies on the first column of obtained c-c, p-p, q-p, and p-q histograms showed significant heterochromatin attraction not only between nonacrocentrics and acrocentrics but also between two nonacrocentric chromosome pairs (1 and 16). However since, not all c-heterochromatin-rich chromosomes were involved in associations (pair 5), and conversely, since chromosomes without an important centromeric heterochromatin block were involved in associations (pairs 8 and 11), it is probable that centromeric heterochromatin is not the only factor responsible for chromosome association. Moreover associations occur not only at the centromeres; in our circle analysis of the binding capacity of the telomeres or centromere of one chromosome pair with the telomeres or the centromeres of all other chromosome pairs, we also found preferential associations for T(4,13), T(9,15), T(11,15), T(13,19) T(15,19), T(17,18), T(17,22), and T(19,20).We therefore suggest that heterochromatin is not the only reason for chromosome association and that telomeres may also play an important part in this process.  相似文献   

6.
Heterochromatin distribution and differentiation in metaphase chromosomes of two morphologically identical Drosophila races, D. nasuta nasuta and D. n. albomicana, have been studied by C- and N-banding methods. — The total heterochromatin values differ only slightly between these races. However, homologous chromosomes of the two Drosophila forms show striking differences in the size of heterochromatin regions and there is an alternating pattern in D. n. nasuta and D. n. albomicana of chromosomes which contain more, or respectively less heterochromatin than their counterparts in the other race. — Three different N-banding patterns could be obtained depending on the conditions of the method employed: One banding pattern occurs which corresponds to the C-banding pattern. Another pattern is the reverse of the C-band pattern; the euchromatic chromosome regions and the centromeres are stained whereas the pericentric heterochromatin regions remain unstained. In the Y chromosomes of both races and in chromosome 4 of D. n. albomicana, however, the heterochromatin is further differentiated. In the third N-banding pattern only the centromeres are deeply stained. Furthermore, between the races, subtle staining differences in the pericentric heterochromatin regions can be observed as verified in F1 hybrids. On the basis of C- and N-banding results specific aspects of chromosomal differences between D. n. nasuta and D. n. albomicana are discussed.Dedicated to Prof. W. Beermann on the occasion of his 60th birthday  相似文献   

7.
A study on the factors involved in chromosome digestion by restriction endonuclease was carried out on 5-azacytidine treated and untreated human chromosomes 1, 9, 15 and 16 by using NdeII and Sau3AI isoschizomers. After treatment with 5-azacytidine, chromosomes 1, 9, 15, and 16 showed two differentiated areas at the centromeric regions: the centromere, fully condensed, and the pericentromeric heterochromatin, decondensed. Chromosomes not treated with 5-azacytidine after digestion with Sau3AI and NdeII showed all the centromeric regions undigested, except pair number 1, digested at the pericentromeric area. Digestion of the 5-azacytidine decondensed chromosomes with Sau3AI and NdeII showed the centromeres undigested in the four chromosome pairs while the pericentromeric heterochromatin appeared largely digested. Other factors, different to target distribution, are necessary to explain the pattern of restriction endonuclease digestion observed in this communication.  相似文献   

8.
Fluram (Fluorescamine; 4-phenylspiro(furan-2(3H),1'-phthalan)-3,3'-dione) is a fluorogenic reagent, which permits the detection of primary amines by forming highly fluorescent pyrrolinone derivatives. This reagent has been used on methanol-acetic acid fixed metaphase chromosomes of mouse and man and proved to be very effective in differentiating chromosome regions in both genomes. Mouse centromeric heterochromatin is highly reactive, showing intense fluorescence in all centromeric regions, whereas human chromosomes show no fluorescence in such regions. In addition, a G-like banding pattern is also obtained in both types of chromosomes. The differential reactivity of each chromosome region showed by this method demonstrates a heterogeneous distribution of chromosome proteins, resulting in a chromosome banding pattern, which is in this case species dependent.  相似文献   

9.
Centromeres and telomeres of higher eukaryotes generally contain repetitive sequences, which often form pericentric or subtelomeric heterochromatin blocks. C-banding analysis of chromosomes of Azara''s owl monkey, a primate species, showed that the short arms of acrocentric chromosomes consist mostly or solely of constitutive heterochromatin. The purpose of the present study was to determine which category, pericentric, or subtelomeric is most appropriate for this heterochromatin, and to infer its formation processes. We cloned and sequenced its DNA component, finding it to be a tandem repeat sequence comprising 187-bp repeat units, which we named OwlRep. Subsequent hybridization analyses revealed that OwlRep resides in the pericentric regions of a small number of metacentric chromosomes, in addition to the short arms of acrocentric chromosomes. Further, in the pericentric regions of the acrocentric chromosomes, OwlRep was observed on the short-arm side only. This distribution pattern of OwlRep among chromosomes can be simply and sufficiently explained by assuming (i) OwlRep was transferred from chromosome to chromosome by the interaction of pericentric heterochromatin, and (ii) it was amplified there as subtelomeric heterochromatin. OwlRep carries several direct and inverted repeats within its repeat units. This complex structure may lead to a higher frequency of chromosome scission and may thus be a factor in the unique distribution pattern among chromosomes. Neither OwlRep nor similar sequences were found in the genomes of the other New World monkey species we examined, suggesting that OwlRep underwent rapid amplification after the divergence of the owl monkey lineage from lineages of the other species.  相似文献   

10.
DNA replication patterns of individual chromosomes and their various euchromatic and heterochromatic regions were analyzed by means of quantitative autoradiography. The cultured cells of the skin fibroblast of a male Indian muntjac were pulse labeled with 3H-thymidine and chromosome samples were prepared for the next 32 h at 1–2 h intervals. A typical late replication pattern widely observed in heterochromatin was not found in the muntjac chromosomes. The following points make the DNA replication of the muntjac chromosomes characteristics: (1) Heterochromatin replicated its DNA in a shorter period with a higher rate than euchromatin. (2) Two small euchromatic regions adjacent to centromeric heterochromatin behaved differently from other portions of euchromatin, possessing shorter Ts, higher DNA synthetic rates and starting much later and ending earlier their DNA replication. (3) Segmental replication patterns were observed in the chromosomes 2 and 3 during the entire S phase. (4) Both homologues of the chromosome 3 showed a synchronous DNA replication pattern throughout the S phase except in the distal portion of the long arms during the mid-S phase.  相似文献   

11.
L Sánchez  P Martínez  V Goyanes 《Génome》1991,34(5):710-713
Human chromosomes were treated with 5-azacytidine and analyzed by whole-mount electron microscopy. This base analogue produces undercondensation of heterochromatin and separation of the centromere from the bulk of pericentromeric heterochromatin in chromosomes 1, 9, 15, and 16, which allows clear delimitation of the centromere regions. A quantitative analysis of centromeres showed that chromosomes 1, 9, and 16 have centromeres of different size. The centromere of chromosome 15 is similar in size to that of chromosome 9 and different from those of chromosomes 1 and 16. No interindividual variation for centromere size was found. A positive correlation between centromere and chromosome size was found for the chromosomes analyzed.  相似文献   

12.
The C-banding patterns in the chromosomes ofMicrotus oeconomus, M. arvalis andM. ochrogaster demonstrate differences in the amount and distribution of heterochromatin. Autosomal centromeric heterochromatin appears as conspicuous blocks or as small dots, and in several chromosomes no heterochromatin was detected; interstitial heterochromatin was observed in one autosome pair ofM. ochrogaster. The sex chromosomes also demonstrate differences in the C-banding pattern. InM. oeconomus, the X chromosome exhibits a block of centromeric heterochromatin which is larger than that of the autosomes; this characteristic helps to recognize the X chromosomes in the karyotype. InM. arvalis no heterochromatin was appreciated in the sex chromosomes. The Y chromosomes ofM. ochrogaster andM. oeconomus are entirely heterochromatic. During male meiosis heterochromatin shows condensation, association and chiasma prevention; the sex chromosomes pair end to end in the three species. At pairing, the Y chromosome ofM. arvalis is despiralized, but it appears condensed again shortly before separation of the bivalent.  相似文献   

13.
Analysis of human spermatozoa and lymphocytes using C-banding techniques and in situ hybridization has shown a higher order packaging of the human genome. Chromosomes are not distributed entirely at random within the nucleus. In particular, chromosomes 1, 9, and 16, carrying large blocks of pericentromeric heterochromatin, and the Y chromosome, carrying heterochromatin in Yq12, are in close proximity to each other within the nucleus and are involved in somatic pairing with nonhomologous chromosomes. In order to determine whether the close proximity of these chromosomes in any way is attributable to the distribution of heterochromatin, double in situ hybridization was performed on chromosomes 1--Y, 9--Y, and 16--Y as well as on 1--X, 9--X, and 16--X-with chromosome X as the other gonosome carrying less heterochromatin-in human spermatozoa. Each pair was found to have a nonrandom spatial distribution. However, comparison of the arrangement of chromosomes 1--Y versus 1--X and 9--Y versus 9--X revealed that heterochromatin cannot be the only cause for the tendency of chromosome fusion, because only the results of the chromosome pair 1--Y/1--X could support this proposition. In conclusion, the heterochromatin effect cannot be, in itself, an adequate explanation for chromosome association, implicating as well other mechanisms.  相似文献   

14.
本文对我国云南南部的白须长臂猿(H.leucogenys)染色体的G带、C带、晚复制带及Ag-NORs进行了较为详细的研究。它的2n=52,核型公式为44(M或SM)+6(A),XY(M,A)。C带表明一些染色体着丝点C带弱化;有的染色体出现插入的和端位的C带;X染色体两臂有端位C带,Y染色体是C带阳性和晚复制的。Ag-NORs的数目,雌体有4个,雄体有5个,Y染色体上具NOR。本文对白颊长臂猿与其它长臂猿间的亲缘关系、核型进化的可能途径进行了讨论。  相似文献   

15.
The bimodal karyotype of pig appears to contain two types of constitutive heterochromatin, reflecting different satellite DNA families: GC-rich heterochromatin located mainly in the centromeric regions of the biarmed chromosomes, and less-GC-rich heterochromatin in the centromeric regions of the one-armed chromosomes. In order to better discriminate this constitutive heterochromatin, we treated pig chromosome preparations with eight different restriction endonucleases, followed by C-banding. This technique allowed an expedited characterization of the constitutive heterochromatin and demonstrated its great heterogeneity in pig chromosomes. Our work allowed the detection and identification of twenty-two heterochromatin subclasses (twelve centromeric, four interstitial, five telomeric, and the Yq band). Moreover, several cryptic interstitial and telomeric bands were revealed. The work presented here is useful not only for fundamental studies of chromosome banding and constitutive heterochromatin, but also offers a new approach for pig clinical cytogenetics.  相似文献   

16.
Luzula spp, like the rest of the members of the Juncaceae family, have holocentric chromosomes. Using the rice 155-bp centromeric tandem repeat sequence (RCS2) as a probe, we have isolated and characterized a 178-bp tandem sequence repeat (LCS1) from Luzula nivea. The LCS1 sequence is present in all Luzula species tested so far (except L. pilosa) and like other satellite repeats found in heterochromatin, the cytosine residues are methylated within the LCS1 repeats. Using fluorescent in situ hybridization (FISH) experiments we have shown that there are at least 5 large clusters of LCS1 sequences distributed at heterochromatin regions along each of the 12 chromosomes of L. nivea. We have shown that a centromeric antibody Skp1 co-localizes with these heterochromatin regions and with the LCS1 sequences. This suggests that the LCS1 sequences are part of regions which function as centromeres on these holocentric chromosomes. Furthermore, using the BrdU assay to identify replication sites, we have shown that these heterochromatin sites containing LCS1 associate when being replicated in root interphase nuclei. Our results also show premeiotic chromosome association during anther development as indicated by single-copy BAC in situ and the presence of fewer LCS1 containing heterochromatin sites in these cells.  相似文献   

17.
Two zebrafish AluI repeats were localized in metaphase chromosomes by means of the primed in situ (PRINS) labeling technique, using oligonucleotide primers based on published sequences. An AT-rich, tandemly repeated, long AluI restriction fragment (RFAL1) labeled the (peri)centromeric regions of all chromosomes. The GC-rich short fragment (RFAS) was found to be localized in the paracentromeric regions of 17 chromosome pairs, which were mostly subtelocentric. The RFAS labeling pattern generally fits the previously described chromomycin A3 (CMA3) staining pattern. The differential composition of heterochromatin in zebrafish chromosomes is discussed.  相似文献   

18.
白眉长臂猿(Hylobates hoolock leuconedys)的染色体研究   总被引:7,自引:3,他引:4  
本文对两只雄性白眉长臂猿的染色体的C带、G带及Ag-NORs分布进行了较详细的分析,证实染色体数2n=38,并对该种的分类地位提出了一些新看法。  相似文献   

19.
Mammalian chromosome replication was studied by the aid of premature chromosome condensation (PCC). After induction of PCC the sites of DNA replication appear as “gaps” between condensed chromosomal regions. These condensed particles are unineme before and bineme after DNA replication. The two phases are due mainly to the unineme or bineme nature of the particles. During early S-phase almost all particles are unineme, during late S-phase they are bineme and there is only one transitory stage between these two main stages. Premature chromosome condensation was studied in detail on a specific human chromosome 22 which is marked by its heterochromatin constitution. This led to easy identification of these elements in S-phase PCC (S-PCC) preparations. For each stage of the S-phase there was a reproducible pattern of condensed chromosomal particles making up the whole chromosome. The number of these particles was rather limited and a complementary pattern was found in early versus late S-phase. The pattern of early S-PCC corresponded to the banding pattern of G-banded prometaphase chromosomes; the pattern of late S-PCC, to R-banded prometaphase chromosomes. Thus, “gaps” and condensed particles as observed after PCC induction are obviously homologous to chromosome replication units. Replication of constitutive heterochromatin occurred during the very late S-phase. During this stage PCC induction led to condensation of the heterochromatin into several small, highly fluorescent particles.  相似文献   

20.
By means of in situ nick-translation technique, methylation patterns of pericentric heterochromatin of chromosomes 1, 9 and 16 in extraembryonic (chorion) and embryonic cells of 5-8 week old human fetuses with normal karyotype (5), and in one specimen with trisomy for chromosome 16 were studied. Fixed metaphase chromosomes from direct chromosome preparations were digested with either endonuclease Msp I or its isoshizomer Hpa II recognizing and restricting the same sDNA sequence C decreases CGC with Hpa II, but not Msp I sensitive to methylation state of internal cytosin. According to our results, heterochromatin of extraembryonic, but not embryonic cells is hypomethylated. An obvious difference was registered in signal strength between homologous regions in iq12 of both parental chromosomes 1 in early (5-6 week old), but not in more advanced fetuses. Methylation pattern difference was detected in pericentric chromatin of triple copies of chromosome 16 in extraembryonic tissues of the 47,XY, + 16 fetus. These results are in line with a hypothesis of intraheterochromatin location of "early" genes governing initial stages of embryonic development in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号