首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration.  相似文献   

2.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

3.
The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects.  相似文献   

4.
Focal adhesion kinase (FAK) plays a critical role during vascular development because knockout of FAK in endothelial cells (ECs) is embryonic lethal. Surprisingly, tamoxifen-inducible conditional knockout of FAK in adult blood vessels (inducible EC-specific FAK knockout [i-EC-FAK-KO]) produces no vascular phenotype, and these animals are capable of developing a robust growth factor-induced angiogenic response. Although angiogenesis in wild-type mice is suppressed by pharmacological inhibition of FAK, i-EC-FAK-KO mice are refractory to this treatment, which suggests that adult i-EC-FAK-KO mice develop a compensatory mechanism to bypass the requirement for FAK. Indeed, expression of the FAK-related proline-rich tyrosine kinase 2 (Pyk2) is elevated and phosphorylated in i-EC-FAK-KO blood vessels. In cultured ECs, FAK knockdown leads to increased Pyk2 expression and, surprisingly, FAK kinase inhibition leads to increased Pyk2 phosphorylation. Pyk2 can functionally compensate for the loss of FAK because knockdown or pharmacological inhibition of Pyk2 disrupts angiogenesis in i-EC-FAK-KO mice. These studies reveal the adaptive capacity of ECs to switch to Pyk2-dependent signaling after deletion or kinase inhibition of FAK.  相似文献   

5.
Integrin binding to matrix proteins such as fibronectin (FN) leads to formation of focal adhesion (FA) cellular contact sites that regulate migration. RhoA GTPases facilitate FA formation, yet FA-associated RhoA-specific guanine nucleotide exchange factors (GEFs) remain unknown. Here, we show that proline-rich kinase-2 (Pyk2) levels increase upon loss of focal adhesion kinase (FAK) in mouse embryonic fibroblasts (MEFs). Additionally, we demonstrate that Pyk2 facilitates deregulated RhoA activation, elevated FA formation, and enhanced cell proliferation by promoting p190RhoGEF expression. In normal MEFs, p190RhoGEF knockdown inhibits FN-associated RhoA activation, FA formation, and cell migration. Knockdown of p190RhoGEF-related GEFH1 does not affect FA formation in FAK−/− or normal MEFs. p190RhoGEF overexpression enhances RhoA activation and FA formation in MEFs dependent on FAK binding and associated with p190RhoGEF FA recruitment and tyrosine phosphorylation. These studies elucidate a compensatory function for Pyk2 upon FAK loss and identify the FAK–p190RhoGEF complex as an important integrin-proximal regulator of FA formation during FN-stimulated cell motility.  相似文献   

6.
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.  相似文献   

7.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

8.
Mammary cancer stem cells (MaCSCs) have been identified as a rare population of cells capable of self-renewal to drive mammary tumorigenesis and metastasis. Nevertheless, relatively little is known about the intracellular signaling pathways regulating self-renewal and metastatic activities of MaCSCs in vivo. Using a recently developed breast cancer mouse model with focal adhesion kinase (FAK) deletion in mammary tumor cells (MFCKO-MT mice), here we present evidence suggesting a compensatory function of Pyk2, a FAK-related kinase, in the regulation of MaCSCs and metastasis in these mice. Increased expression of Pyk2 was found selectively in pulmonary metastatic nodules of MFCKO-MT mice, and its inhibition significantly reduced mammary tumor development and metastasis in these mice. Consistent with the idea of metastasis driven by MaCSCs, we detected selective up-regulation of Pyk2 in MaCSCs, but not bulk mammary tumor cells, of primary tumors developed in MFCKO-MT mice. We further showed that inhibition of Pyk2 in FAK-null MaCSCs significantly decreased their tumorsphere formation and migration in vitro as well as self-renewal, tumorigenicity, and metastatic activity in vivo. Last, we identified PI3K/Akt signaling as a major mediator of FAK regulation of MaCSCs as well as a target for the compensatory function of Pyk2 in FAK-null MaCSCs. Together, these results further advance our understanding of FAK and its related tyrosine kinase Pyk2 in regulation of MaCSCs in breast cancer and suggest that pharmaceutically targeting these kinases may hold promise as a novel treatment for the disease by targeting and eradicating MaCSCs.  相似文献   

9.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.  相似文献   

10.
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.  相似文献   

11.
12.
Cell adhesion to the extracellular matrix through integrin receptors can activate signaling cascades within the cell. Focal adhesion kinase (FAK) is a protein tyrosine kinase activated by integrin adhesion. The role of FAK within the cell is not clear, although evidence suggests roles in cell motility or the regulation of adhesion-dependent cell survival. We have treated primary cultures of chick embryo cells with antisense oligonucleotides to FAK to reduce the level of FAK protein expression. Levels of the related protein, proline-rich tyrosine kinase 2 (Pyk2) and the FAK substrate paxillin, were unaffected by the addition of oligonucleotides, whereas FAK expression was reduced by 70%. Levels of apoptotic cell death did not significantly increase after the addition of oligonucleotides. However, there was a change in the distribution of focal adhesion sites from a uniformly distributed pattern to a mainly peripheral pattern. This was accompanied by a loss of stress fibers and an increase in the peripheral actin cytoskeleton, as the cells became rounded. These results suggest that in these early embryonic cells, FAK expression regulates the arrangement of focal adhesions and the cytoskeleton that result in a motile phenotype, but that FAK does not appear to regulate apoptosis.  相似文献   

13.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK) phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.  相似文献   

14.
B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.  相似文献   

15.
16.
The macrophage colony-stimulating factor (M-CSF, CSF-1) regulates survival, proliferation and differentiation of mononuclear phagocytes, as well as macrophage motility and morphology. The latter features are usually regulated by ECM-mediated activation of integrins and subsequent tyrosine phosphorylation of cellular proteins, including focal adhesion kinase (FAK). FAK is phosphorylated by downstream receptor tyrosine kinases as well. We addressed the question whether M-CSF regulates FAK tyrosine phosphorylation in macrophages, and found that M-CSF induces FAK phosphorylation at all known tyrosine residues. This phosphorylation was dependent on Src. Extracellularly-regulated kinase (ERK), Jun N-terminal kinase (JNK) and phosphatidylinositol-3-kinase (PI3K) were found to be negatively involved in M-CSF-induced FAK phosphorylation, as their inhibition resulted in FAK hyper-phosphorylation. Following M-CSF treatment, FAK and the active forms of M-CSFR and Src were redistributed to the cytoskeleton, where active ERK, JNK and PI3K were detectable. Immunofluorescence showed the presence of FAK and its active form in focal complexes following M-CSF treatment. Moreover, cell spreading and adhesion were impaired when FAK tyrosine phosphorylation was abrogated by either transfection with FRNK, a dominant negative form of FAK, or treatment with a number of inhibitors of upstream FAK-activating signals. These results point to a relevant role for FAK in the regulation of cell spreading and adhesion in macrophages.  相似文献   

17.
The related cytoplasmic non-receptor tyrosine kinases Pyk2 (proline-rich tyrosine kinase 2) and FAK (focal adhesion kinase) have been implicated in phenylephrine-induced G-protein-coupled receptor-mediated signaling mechanisms leading to cardiomyocyte hypertrophy. We report that, in phenylephrine-stimulated neonatal rat ventricular myocytes (NRVM), Pyk2 augments expression of the hypertrophic marker atrial natriuretic factor (ANF) but reduces cytoskeletal organization and cell spreading. In contrast, FAK attenuates ANF production but does not alter cytoskeletal organization and cell spreading. Pyk2 and FAK exhibit differential localization in both unstimulated and phenylephrine-stimulated myocytes. Pyk2 catalytic activity is required for Pyk2 to augment ANF secretion but is not necessary to reduce cell spreading. Pyk2 autophosphorylation is required but not sufficient for Pyk2 to augment ANF secretion. Expression of the Pyk2 FERM domain as an autonomous fragment inhibits phenylephrine-mediated ANF secretion and reduces cell spreading. In addition, expression of the Pyk2 FERM domain inhibits the ability of Pyk2 to augment ANF secretion; this is correlated with reduced Pyk2 autophosphorylation. These data indicate that Pyk2 and FAK have different roles and occupy different positions in signaling pathways leading to the development of cardiomyocyte hypertrophy. This work was supported by grant HL67938 from the National Institutes of Health (J.C.L.)  相似文献   

18.
DFak56 is a novel Drosophila melanogaster focal adhesion kinase   总被引:2,自引:0,他引:2  
The mammalian focal adhesion kinase (FAK) family of nonreceptor protein-tyrosine kinases have been implicated in controlling a multitude of cellular responses to the engagement of cell surface integrins and G protein-coupled receptors. We describe here a Drosophila melanogaster FAK homologue, DFak56, which maps to band 56D on the right arm of the second chromosome. Full-length DFak56 cDNA encodes a phosphoprotein of 140 kDa, which shares strong sequence similarity not only with mammalian p125(FAK) but also with the more recently described mammalian Pyk2 (also known as CAKbeta, RAFTK, FAK2, and CADTK) FAK family member. DFak56 has intrinsic tyrosine kinase activity and is phosphorylated on tyrosine in vivo. As is the case for FAK, tyrosine phosphorylation of DFak56 is increased upon plating Drosophila embryo cells on extracellular matrix proteins. In situ hybridization and immunofluorescence staining analysis showed that DFak56 is ubiquitously expressed with particularly high levels within the developing central nervous system. We utilized the UAS-GAL4 expression system to express DFak56 and analyze its function in vivo. Overexpression of DFak56 in the wing imaginal disc results in wing blistering in adults, a phenotype also observed with both position-specific integrin loss of function and position-specific integrin overexpression. Our results imply a role for DFak56 in adhesion-dependent signaling pathways in vivo during D. melanogaster development.  相似文献   

19.
Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the α1α4 and α2α3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.  相似文献   

20.
The focal adhesion kinase Pyk2 integrates signals from cell adhesion receptors, growth factor receptors, and G-protein-coupled receptors leading to the activation of intracellular signaling pathways that regulate cellular phenotypes. The intrinsic mechanism for the activation of Pyk2 activity remains to be fully defined. Previously, we reported that mutations in the N-terminal FERM domain result in loss of Pyk2 activity and expression of the FERM domain as an autonomous fragment inhibits Pyk2 activity. In the present study, we sought to determine the mechanism that underlies these effects. Utilizing differentially epitope-tagged Pyk2 constructs, we observed that Pyk2 forms oligomeric complexes in cells and that complex formation correlates positively with tyrosine phosphorylation. Similarly, when expressed as an autonomous fragment, the Pyk2 FERM domain formed a complex with other Pyk2 FERM domains but not the FAK FERM domain. When co-expressed with full-length Pyk2, the autonomously expressed Pyk2 FERM domain formed a complex with full-length Pyk2 preventing the formation of Pyk2 oligomers and resulting in reduced Pyk2 phosphorylation. Deletion of the FERM domain from Pyk2 enhanced Pyk2 complex formation and phosphorylation. Together, these data indicate that the Pyk2 FERM domain is involved in the regulation of Pyk2 activity by acting to regulate the formation of Pyk2 oligomers that are critical for Pyk2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号