首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 μmol m−2 s−1) on net photosynthetic rate (P N), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased P N, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons.  相似文献   

2.
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress.  相似文献   

3.
The relationships among the leaf adenylate energy charge, the xanthophyll-cycle components, and photosystem II (PSII) fluorescence quenching were determined in leaves of cotton (Gossypium hirsutum L. cv. Acala) under different leaf temperatures and different intercellular CO2 concentrations (Ci). Attenuating the rate of photosynthesis by lowering the Ci at a given temperature and photon flux density increased the concentration of high-energy adenylate phosphate bonds (adenylate energy charge) in the cell by restricting ATP consumption (A.M. Gilmore, O. Björkman 1994, Planta 192, 526–536). In this study we show that decreases in photosynthesis and increases in the adenylate energy charge at steady state were both correlated with decreases in PSII photo-chemical efficiency as determined by chlorophyll fluorescence analysis. Attenuating photosynthesis by decreasing Ci also stimulated violaxanthin-de-epoxidation-dependent nonradiative dissipation (NRD) of excess energy in PSII, measured by nonphotochemical fluorescence quenching. However, high NRD levels, which indicate a large trans-thylakoid proton gradient, were not dependent on a high adenylate energy charge, especially at low temperatures. Moreover, dithiothreitol at concentrations sufficient to fully inhibit violaxanthin de-epoxidation and strongly inhibit NRD, affected neither the increased adenylate energy charge nor the decreased PSII photo-chemical efficiency that result from inhibiting photosynthesis. The build-up of a high adenylate energy charge in the light that took place at low Ci and low temperatures was accompanied by a slowing of the relaxation of non-photochemical fluorescence quenching after darkening. This slowly relaxing component of nonphotochemical quenching was also correlated with a sustained high adenylate energy charge in the dark. These results indicate that hydrolysis of ATP that accumulated in the light may acidify the lumen and thus sustain the level of NRD for extended periods after darkening the leaf. Hence, sustained nonphotochemical quenching often observed in leaves subjected to stress, rather than being indicative of photoinhibitory damage, apparently reflects the continued operation of NRD, a photoprotective process.Abbreviations A antheraxanthin - adenylate kinase (myokinase), ATP:AMPphosphotransferase - Ci intercellular CO2 concentration - DPS de-epoxidation state of violaxanthin, ([Z+A]/[V+A+Z]) - DTT dithiothreitol - pH trans-thylakoid proton gradient - [2ATP+ADP] - F steady-state fluorescence in the presence of NRD - FM maximal fluorescence in the absence of NRD - FM maximal fluorescence in the presence of NRD - NRD nonradiative energy dissipation - PET photosynthetic electron transport rate - PFD photon flux density - PSII photon yield of PSII photochemistry at the actual reduction state in the light or dark - QA the primary electron acceptor of PSII - [ATP+ADP+AMP] - SVN Stern-Volmer nonphotochemical quenching - V violaxanthin - Z zeaxanthin We thank Connie Shih for skillful assistance in growing plants and for conducting HPLC analyses. A Carnegie Institution Fellowship to A.G. is also gratefully acknowledged.  相似文献   

4.
We have isolated very high light resistant nuclear mutants (VHL R) in Chlamydomonas reinhardtii, that grow in 1500–2000 mol photons m–2 s–1 (VHL) lethal to wildtype. Four nonallelic mutants have been characterized in terms of Photosystem II (PS II) function, nonphotochemical quenching (NPQ) and xanthophyll pigments in relation to acclimation and survival under light stress. In one class of VHL R mutants isolated from wild type (S4 and S9), VHL resistance was accompanied by slower PS II electron transfer, reduced connectivity between PS II centers and decreased PS II efficiency. These lesions in PS II function were already present in the herbicide resistant D1 mutant A251L (L *) from which another class of VHL R mutants (L4 and L30) were isolated, confirming that optimal PS II function was not critical for survival in very high light. Survival of all four VHL R mutants was independent of CO2 availability, whereas photoprotective processes were not. The de-epoxidation state (DPS) of the xanthophyll cycle pigments in high light (HL, 600 mol photons m–2 s–1) was strongly depressed when all genotypes were grown in 5% CO2. In S4 and S9 grown in air under HL and VHL, high DPS was well correlated with high NPQ. However when the same genotypes were grown in 5% CO2, high DPS did not result in high NPQ, probably because high photosynthetic rates decreased thylakoid pH. Although high NPQ lowered the reduction state of PS II in air compared to 5% CO2 at HL in wildtype, S4 and S9, this did not occur during growth of S4 and S9 in VHL. L * and VHL R mutants L4 and L30, also showed high DPS with low NPQ when grown air or 5% CO2, possibly because they were unable to maintain sufficiently high pH due to constitutively impaired PS II electron transport. Although dissipation of excess photon energy through NPQ may contribute to VHL resistance, there is little evidence that the different genes conferring the VHL R phenotype affect this form of photoprotection. Rather, the decline of chlorophyll per biomass in all VHL R mutants grown under VHL suggests these genes may be involved in regulating antenna components and photosystem stoichiometries.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

6.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors.  相似文献   

7.
The relationship between susceptibility to photoinhibition, zeaxanthin formation and chlorophyll fluorescence quenching at suboptimal temperatures was studied in chilling-sensitive maize and in non-acclimated and cold-acclimated Oxyria digyna , a chilling-tolerant plant of arctic and alpine habitats. In maize, zeaxanthin formation was strongly suppressed by chilling. Zeaxanthin formed during preillumination at 20°C did not protect maize leaves from photoinhibition during a subsequent high-light, low-temperature treatment, as judged from the ratios of variable to maximal fluorescence, Fv/Fm. However, such preillumination significantly increased non-photochemical quenching (qN) at low temperatures, mainly due to an enhancement of the fast-relaxing qN component (i.e., of energy-dependent quenching. qE). In O. digyna , cold-acclimation resulted in an increased zeaxanthin formation in the temperature range of 2.5–20°C. Cold-acclimation substantially decreased the susceptibility towards photoinhibition at 4°C, but qN remained nearly unchanged between 2 and 38°C, as compared to control plants. Effects of cold acclimation on photosynthesis, photochemical quenching and quantum efficiency of photosystem II were small and indicated a slight amelioration only of the function of the photosynthetic apparatus at suboptimal temperatures (2–20°Ct. I) is concluded, that the xanthophyll cycle is strongly influenced by cold acclimation, while effects on the photosynthetic carbon assimilation only play a minor role in O. digyna.  相似文献   

8.
Higher plants must dissipate absorbed light energy that exceeds the photosynthetic capacity to avoid molecular damage to the pigments and proteins that comprise the photosynthetic apparatus. Described in this minireview is a current view of the biochemical, biophysical and bioenergetic aspects of the primary photoprotective mechanism responsible for dissipating excess excitation energy as heat from photosystem II (PSII). The photoprotective heat dissipation is measured as nonphotochemical quenching (NPQ) of the PSII chlorophyll a (Chl a) fluorescence. The NPQ mechanism is controlled by the trans-thylakoid membrane pH gradient (ΔpH) and the special xanthophyll cycle pigments. In the NPQ mechanism, the de-epoxidized endgroup moieties and the trans-thylakoid membrane orientations of antheraxanthin (A) and zeaxanthin (Z) strongly affect their interactions with protonated chlorophyll binding proteins (CPs) of the PSII inner antenna. The CP protonation sites and steps are influenced by proton domains sequestered within the proteo-lipid core of the thylakoid membrane. Xanthophyll cycle enrichment around the CPs may explain why changes in the peripheral PSII antenna size do not necessarily affect either the concentration of the xanthophyll cycle pigments on a per PSII unit basis or the NPQ mechanism. Recent time-resolved PSII Chi a fluorescence studies suggest the NPQ mechanism switches PSII units to an increased rate constant of heat dissipation in a series of steps that include xanthophyll de-epoxidation, CP-protonation and binding of the xanthophylls to the protonated CPs; the concerted process can be described with a simple two-step, pH-activation model. The xanthophyll cycle-dependent NPQ mechanism is profoundly influenced by temperatures suboptimal for photosynthesis via their effects on the trans-thylakoid membrane energy coupling system. Further, low temperature effects can be grouped into either short term (minutes to hours) or long term (days to seasonal) series of changes in the content and composition of the PSII pigment-proteins. This minireview concludes by briefly highlighting primary areas of future research interest regarding the NPQ mechanism.  相似文献   

9.
Richard C. Leegood 《Planta》1985,164(2):163-171
Sap extracted from attached leaves of two-to three-week-old maize plants witt the aid of a roller device was almost devoid of bundle-sheath contamination as judged by the distribution of mesophyll and bundle-sheath markers. The extraction could be done very rapidly (less than 1 s) and the extract immediately quenched in HClO4 or reserved for enzyme assay. Comparison of the contents of metabolites in intact leaves and in the leaf extract allowed estimation of the distribution of metabolites between the bundle-sheath and the mesophyll compartments. Substantial amounts of metabolites such as malate and amino acids were present in the non-photosynthetic cells of the midrib. In the illuminated leaf, triose phosphate was predominantly located outside the bundle-sheath while the major part of the 3-phosphoglycerate was in the bundle sheath. The results indicate the existence of concentration gradients of triose phosphate and 3-phosphoglycerate in the leaf which are capable of maintaining carbon flow between the mesophyll and bundle-sheath cells during photosynthesis. There was no evidence for the existence of a gradient of pyruvate between the bundle-sheath and the mesophyll cells.  相似文献   

10.
The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach.After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This fast component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid pH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions.Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF.We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.Abbreviations PFD photon flux density - PS photosystem  相似文献   

11.
Effects of photoinhibition on photosynthesis in pea (Pisum sativum L.) leaves were investigated by studying the relationship between the severity of a photoinhibitory treatment (measured as Fv/Fm) and several photoacoustic and chlorophyll a fluorescence parameters. Because of the observed linear relationship between the decline of Fv/Fm and the potential oxygen evolution rate determined by the photoacoustic method, the parameter Fv/Fm was used as an indicator for the severity of photoinhibition. Our analysis revealed that part of the Photosystem II (PS II) reaction centers is inactive in oxygen evolution and is also less sensitive to photoinhibition. Correcting the parameter qP (fraction of open PS II reaction centers) for inactive PS II centers unveiled a strong increase of qP in severely inhibited pea leaves, indicating that the inactivated active centers do no longer contribute to qP and that photoinhibition has an all or none effect on PS II centers. Analysis of qE (energy quenching) demonstrated its initial increase possibly associated with dephosphorylation of LHC II. Analysis of qI (photoinhibition dependent quenching) showed that the half-time of recovery of qI increases steeply below an Fv/Fm of 0.65. This increase of the relaxation half-time corresponds with a decrease of the electron transport rate J and tentatively indicates that the supply of ATP, needed for the recovery, starts to decrease. The data indicate the necessity of correcting for inactive centers in order to make valuable conclusions about effects of photoinhibition on photosynthetic parameters.  相似文献   

12.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

13.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

14.
Recent studies have shown that coleoptile chloroplasts operate the xanthophyll cycle, and that their zeaxanthin concentration co-varies with their sensitivity to blue light. The present study characterized the distribution of photosynthetic pigments in thylakoid pigment–protein complexes from dark-adapted and light-treated coleoptile and mesophyll chloroplasts, the low temperature fluorescence emission spectra, and the rates of PS I and PS II electron transport in both types of chloroplasts from 5-day-old corn seedlings. Pigments were extracted from isolated PS I holocomplex, LHC IIb trimeric and LHC II monomeric complexes and analyzed by HPLC. Chlorophyll distribution in coleoptile thylakoids showed 31% of the total collected Chl in PS I and 65% in the light harvesting complexes of PS II. In mesophyll thylakoids, the values were 44% and 54%, respectively. Mesophyll and coleoptile PS I holocomplexes differed in their Chl t a/Chl t b ratios (8.1 and 6.1, respectively) and -carotene content. In contrast, mesophyll and coleoptile LHC IIb trimers and LHC II monomers had similar Chl t a/Chl t b ratios and -carotene content. The three analyzed pigment–protein complexes from dark-adapted coleoptile chloroplasts contained zeaxanthin, whereas there was no detectable zeaxanthin in the complexes from dark-adapted mesophyll chloroplasts. In both chloroplast types, zeaxanthin and antheraxanthin increased markedly in the three pigment–protein complexes upon illumination, while violaxanthin decreased. In mesophyll thylakoids, zeaxanthin distribution as a percentage of the xanthophyll cycle pool was: LHC II monomers > LHC IIb trimers > PS I holocomplex, and in coleoptile thylakoids, it was: LHC IIb trimers > LHC II monomers = PS I holocomplex. Low temperature (77 K) fluorescence emission spectra showed that the 686 nm emission of coleoptile chloroplasts was approximately 50% larger than that of mesophyll chloroplasts when normalized at 734 nm. The pigment and fluorescence analysis data suggest that there is relatively more PS II per PS I and more LHC I per CC I in coleoptile chloroplasts than in mesophyll chloroplasts. Measurements of t in vitro uncoupled photosynthetic electron transport showed approximately 60% higher rates of electron flow through PS II in coleoptile chloroplasts than in mesophyll chloroplasts. Electron transport rates through PS I were similar in both chloroplast types. Thus, when compared to mesophyll chloroplasts, coleoptile chloroplasts have a distinct PS I pigment composition, a distinct chlorophyll distribution between PS I and PS II, a distinct zeaxanthin percentage distribution among thylakoid pigment–protein complexes, a higher PS II-related fluorescence emission, and higher PS II electron transport capacity. These characteristics may be associated with a sensory transducing role of coleoptile chloroplasts.  相似文献   

15.
Diurnal variation of gas exchange, chlorophyll (Chl) fluorescence, and xanthophyll cycle components of three maize (Zea mays L.) hybrids released in different years, i.e. Baimaya (1950s), Zhongdan2 (1970s), and Nongda108 (1990s), were compared. On cloudless days, the newer hybrids always had higher net photosynthetic rate (P N), especially at noon, than the older ones. At noon, all the hybrids decreased their maximal yield of photosystem 2 (PS2) photochemistry (Fv/Fm) and actual quantum yield of PS2 (ΦPS2), the newer ones always showing higher values. Generally, the newer hybrids displayed higher photochemical quenching of Chl (qP) and lower non-photochemical quenching (NPQ). The interhybrid differences in P N may be owing to their differential photochemical efficiency. A midday depression in P N occurred in all hybrids, which might be caused by serious photoinhibition or by decreased stomatal conductance. However, midday depression in P N was more obvious in the older hybrids, especially when leaves were senescent. The higher de-epoxidation state of the xanthophylls was noted in older hybrids, which was confirmed by their larger NPQ. The newer maize hybrids did not need a strong de-epoxidation state since they had a better photosynthetic quantum conversion rate and a lower NPQ.  相似文献   

16.
We have measured thermoluminescence (TL) and chlorophyll fluorescence from leaves of peas grown under an intermittent light regime (IML) and followed changes in those leaves during greening. IML peas show low variable fluorescence and a certain capacity for reversible non-photochemical quenching. It has been suggested that reversible quenching may be caused by pH-dependent release of Ca2+ from Photosystem II (PS II) (Krieger and Weis (1992) Photosynthetica 27: 89–98). Under conditions in which reversible non-photochemical quenching occurs, a TL band at around 50 °C is observed, in the presence of DCMU, in IML leaves. A band in this temperature range has previously been observed in PS II depleted of Ca2+ (Ono and Inoue (1989) Biochimica et Biophysica Acta 973: 443–449). The 50 °C band disappears upon dark adaptation. In mature leaves, no significant band is seen at 50 °C. It is concluded that, in IML leaves, reversible quenching may be related to the release of Ca2+ from Photosystem II. However, it seems that in the mature system, under most conditions, such release does not contribute significantly to quenching  相似文献   

17.
We studied changes in biochemical and physiological status, level of oxidative damage, and antioxidant enzyme activities in detached leaves of cucumber plants (Cucumis sativus L. cv. Pyunggangnaebyungsamchuk) that were exposed to a low temperature (4°C). Chlorophyll fluorescence (Fv/Fm) declined during the chilling treatment, but was slowly restored after the tissues were returned to 25°C. Likewise, the fluorescence quenching coefficient and relative water content decreased during the stress period, but then increased during recovery. In contrast, we detected a significant rise in protein and hydrogen peroxide contents in the chilled leaves, as well as higher activities for superoxide dismutase, ascorbate peroxidase, peroxidase, and glutathione reductase. However, the level of catalase decreased not only during chilling but also after 24 h of recovery. These results indicate that exposure to low temperatures acts as an oxidative stress. Moreover, we propose that a regulating mechanism exists in the detached cucumber leaves and contains an antioxidant defense system that induces active oxygen species, thereby alleviating the effects of chilling stress within 12 h.  相似文献   

18.
Chen X  Li W  Lu Q  Wen X  Li H  Kuang T  Li Z  Lu C 《Journal of plant physiology》2011,168(15):1828-1836
Although the wheat hybrids have often shown higher grain yields, the physiological basis of the higher yields remains unknown. Previous studies suggest that tolerance to photoinhibition in the hybrid may be one of the physiological bases (Yang et al., 2006, Plant Sci 171:389-97). The objective of this study was to further investigate the possible mechanism responsible for tolerance to photoinhibition in the hybrid. Photosystem II (PSII) photochemistry, the xanthophyll cycle, and antioxidative defense system were compared between the hybrid and its parents subjected to high light stress (1500 μmol m−2 s−1). The analyses of oxygen-evolving activity, chlorophyll fluorescence, and protein blotting demonstrated that the higher tolerance in the hybrid than in its parents was associated with its higher tolerance of PSII to photoinhibition. High light induced an increase in non-photochemical quenching, and this increase was greater in the hybrid than in its parents. There were no differences in the pool size of the xanthophyll cycle between the hybrid and its parents. The content of violaxanthin decreased significantly, whereas the content of zeaxanthin + antherxanthin increased considerably during high light treatments. However, the decrease in violaxanthin content and the increase in zeaxanthin + antherxanthin content were greater in the hybrid than in its parents. High light resulted in a significant accumulation of H2O2, O2 and catalytic Fe, and this accumulation was less in the hybrid than in its parents. High light induced a significant increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, and these increases were greater in the hybrid than its parents. These results suggest that the higher tolerance to photoinhibition in the hybrid may be associated with its higher capacity for antioxidative defense metabolism and the xanthophyll cycle.  相似文献   

19.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves (Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m–2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P 700 + (oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B1 and B2 fraction of closed PSI and PSII reaction centers, respectively - ES photoacoustically measured energy storage - Fo, Fm and Fs initial, maximal and steady-state levels of chlorophyll fluorescence - P700 reaction center of PSI - PS (I, II) photosystem (I, II) - V = (Fs – Fo)/(Fm – Fo) relative variable chlorophyll fluorescence We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help.  相似文献   

20.
The potential involvement of the xanthophyll cycle in photoprotection of overwintering evergreen plants was investigated. Leaves from five evergreen species. Pseudotsuga menziesii, Pinus panderosa, Euonyums kiautschovicus. Mahonia repens and Malva neglecta, were collected from the field predawn during winter and transferred to the laboratory where chlorophyll fluorescence emission as well as the chlorophyll and carotenoid composition were ascertained periodically for 4.5 days. Leaves and needles from all species were found to have retained large amounts of the xanthophyll cycle pigments zeaxanthin and antheraxanthin, and they exhibited sustained low values of the intrinsic efficiency of photosystem II (PSII; measured as the ratio of variable to maximal fluorescence, Fv/Fm) upon collection. The increase in PSII efficiency was biphasic, with a rapid phase (requiring several hours) and a slow phase (requiring several days). Changes in the conversion state of the xanthophyll cycle were found to correlate with increases in PSII efficiency in both phases, with the latter phase involving large increases in both Fm (maximal fluorescence) and Fo (minimal fluorescence) throughout the period of recovery. The relationship between Fm quenching (expressed as nonphotochemical or Stern-Volmer quenching [NPQ] of Fm, i.e. Fm/ Fm–1) and Fo quenching (Fo/Fo–1) was linear, as expected for changes in xanthophyll cycle-dependent energy dissipation in the antenna complexes. Furthermore, the relationship between Fv/Fm and NPQ during recovery followed the theoretical relationship predicted for changes in the rate constant for energy dissipation in the antenna complexes. This fit between the theoretical relationship and the actual data indicates that all changes in NPQ or Fv/Fm can be accounted for by changes in this rate constant. The results suggest a role for the photoprotective xanthophyll cycle-dependent dissipation process in the lowered efficiency of PSII observed in coldstressed evergreen plants in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号