首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limitless reproductive potential is one of the hallmarks of cancer cells. This ability is due to the maintenance of telomeres, erosion of which causes cellular senescence or death. While most cancer cells activate telomerase, a telomere-elongating enzyme, it remains elusive as to why cancer cells often maintain shorter telomeres than the cells in the surrounding normal tissues. Here, we show that forced telomere elongation in cancer cells promotes their differentiation in vivo. We elongated the telomeres of human prostate cancer cells that possess short telomeres by enhancing their telomerase activity. The resulting cells had long telomeres and retained the ability to form tumors in nude mice. Strikingly, these tumors exhibited many duct-like structures and reduced N-cadherin expression, reminiscent of well-differentiated adenocarcinoma. These changes were caused by telomere elongation and not by enhanced telomerase activity. Gene expression profiling revealed that tumor formation was accompanied by the expression of innate immune system-related genes, which have been implicated in maintaining tumor cells in an undifferentiated state and poor-prognosis cancers. In tumors derived from the telomere-elongated cells, upregulation of such gene sets is not observed. Our observations suggest a functional contribution of short telomeres to tumor malignancy by regulation of cancer cell differentiation.  相似文献   

2.
Extracellular acidification, a mandatory feature of several malignancies, has been mainly correlated with metabolic reprogramming of tumor cells toward Warburg metabolism, as well as to the expression of carbonic anydrases or proton pumps by malignant tumor cells. We report herein that for aggressive prostate carcinoma, acknowledged to be reprogrammed toward an anabolic phenotype and to upload lactate to drive proliferation, extracellular acidification is mainly mediated by stromal cells engaged in a molecular cross-talk circuitry with cancer cells. Indeed, cancer-associated fibroblasts, upon their activation by cancer delivered soluble factors, rapidly express carbonic anhydrase IX (CA IX). While expression of CAIX in cancer cells has already been correlated with poor prognosis in various human tumors, the novelty of our findings is the upregulation of CAIX in stromal cells upon activation. The de novo expression of CA IX, which is not addicted to hypoxic conditions, is driven by redox-based stabilization of hypoxia-inducible factor-1. Extracellular acidification due to carbonic anhydrase IX is mandatory to elicit activation of stromal fibroblasts delivered metalloprotease-2 and -9, driving in cancer cells the epithelial-mesenchymal transition epigenetic program, a key event associated with increased motility, survival and stemness. Both genetic silencing and pharmacological inhibition of CA IX (with sulfonamide/sulfamides potent inhibitors) or metalloprotease-9 are sufficient to impede epithelial-mesenchymal transition and invasiveness of prostate cancer cells induced by contact with cancer-associated fibroblasts. We also confirmed in vivo the upstream hierarchical role of stromal CA IX to drive successful metastatic spread of prostate carcinoma cells. These data include stromal cells, as cancer-associated fibroblasts as ideal targets for carbonic anhydrase IX-directed anticancer therapies.  相似文献   

3.
Death receptor-induced cell death in prostate cancer   总被引:2,自引:0,他引:2  
Prostate cancer mortality results from metastasis and is often coupled with progression from androgen-dependent to androgen-independent growth. Unfortunately, no effective treatment for metastatic prostate cancer increasing patient survival is available. The absence of effective therapies reflects in part a lack of knowledge about the molecular mechanisms involved in the development and progression of this disease. Apoptosis, or programmed cell death, is a cell suicide mechanism that enables multicellular organisms to regulate cell number in tissues. Inhibition of apoptosis appears to be a critical pathophysiological factor contributing to the development and progression of prostate cancer. Understanding the mechanism(s) of apoptosis inhibition may be the basis for developing more effective therapeutic approaches. Our understanding of apoptosis in prostate cancer is relatively limited when compared to other malignancies, in particular, hematopoietic tumors. Thus, a clear need for a better understanding of apoptosis in this malignancy remains. In this review we have focused on what is known about apoptosis in prostate cancer and, more specifically, the receptor/ligand-mediated pathways of apoptosis as potential therapeutic targets.  相似文献   

4.
Growth and survival of tumors at a site of metastasis involve interactions with stromal cells in the surrounding environment. Stromal cells aid tumor cell growth by producing cytokines as well as by modifying the environment surrounding the tumor through modulation of the extracellular matrix (ECM). Small leucine-rich proteoglycans (SLRPs) are biologically active components of the ECM which can be altered in the stroma surrounding tumors. The influence tumor cells have on stromal cells has been well elucidated. However, little is understood about the effect metastatic cancer cells have on the cell biology and behavior of the local stromal cells. Our data reveal a significant down-regulation in the expression of ECM components such as collagens I, II, III, and IV, and the SLRPs, decorin, biglycan, lumican, and fibromodulin in stromal cells when grown in the presence of two metastatic prostate cancer cell lines PC3 and DU145. Interestingly, TGF-β down-regulation was observed in stromal cells, as well as actin depolymerization and increased vimentin and α5β1 integrin expression. MT1-MMP expression was upregulated and localized in stromal cell protrusions which extended into the ECM. Moreover, enhanced stromal cell migration was observed after cross-talk with metastatic prostate tumor cells. Xenografting metastatic prostate cancer cells together with “activated” stromal cells led to increased tumorigenicity of the prostate cancer cells. Our findings suggest that metastatic prostate cancer cells create a metastatic niche by altering the phenotype of local stromal cells, leading to changes in the ECM.  相似文献   

5.
Prostate cancer is a common malignant tumor, which can spread to multiple organs in the body. Metastatic disease is the dominant reason of death for patients with prostate cancer. Prostate cancer usually transfers to bone. Bone metastases are related to pathologic fracture, pain, and reduced survival. There are many known targets for prostate cancer treatment, including androgen receptor (AR) axis, but drug resistance and metastasis eventually develop in advanced disease, suggesting the necessity to better understand the resistance mechanisms and consider multi-target medical treatment. Because of the limitations of approved treatments, further research into other potential targets is necessary. Metastasis is an important marker of cancer development, involving numerous factors, such as AKT, EMT, ECM, tumor angiogenesis, the development of inflammatory tumor microenvironment, and defect in programmed cell death. In tumor metastasis, programmed cell death (autophagy, apoptosis, and necroptosis) plays a key role. Malignant cancer cells have to overcome the different forms of cell death to transfer. The article sums up the recent studies on the mechanism of bone metastasis involving key regulatory factors such as macrophages and AKT and further discusses as to how regulating autophagy is crucial in relieving prostate cancer bone metastasis.Subject terms: Cancer models, Prostate cancer  相似文献   

6.
The existing models of cancer progression assume that a linear sequence of geneticand epigenetic events occurs during this process. In this representation every new event(either loss of a tumor-suppressor, or activation of a proto-oncogene) makes cells even moremalignant. The result is a “super” cell that can form metastases at the distant sites.Metastatic cells are believed to carry all genetic and epigenetic characteristics that arenecessary for metastasis formation. Recently, we have shown that cell-surface proteasehepsin causes disorganization of the basement membrane and promotes prostate cancerprogression and metastasis. In human prostate cancer hepsin is upregulated in theprecancerous lesions and this upregulation is maintained in the primary tumors. Remarkablyand completely unexpected for a metastasis-promoting gene, hepsin is expressed at lowlevels in metastatic lesions and the message is completely absent in metastasis-derivedprostate cancer cell lines. These results demonstrate that genes that play an important role inmetastatic process may exercise their role only at the specific fragments of cancerprogression pathway (for example, during initial invasion and tissue disorganization in theprimary organ) and may have no role in metastatic lesions. Future treatment of cancerpatients may rely heavily on monitoring of tumor progression, as treatment efficient inattenuation of initial tumor progression may be inefficient or even adverse at the advancestages of disease.  相似文献   

7.
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.  相似文献   

8.
Anti-androgens were designed based on the principle of inhibiting the folding of helix 12 of the nuclear androgen receptor. The prepared anti-androgens exhibited full antagonistic activity toward human prostate tumor LNCaP cells with T877A point-mutated nuclear androgen receptor, as far as examined, towards which other known anti-androgens, including hydroxyflutamide, are inactive or act as androgen agonists.  相似文献   

9.
ErbB-3, an ErbB receptor tyrosine kinase, has been implicated in the pathogenesis of several malignancies, including prostate cancer. We found that ErbB-3 expression was up-regulated in prostate cancer cells within lymph node and bone metastases. Despite being a plasma membrane protein, ErbB-3 was also detected in the nuclei of the prostate cancer cells in the metastatic specimens. Because most metastatic specimens were from men who had undergone androgen ablation, we examined the primary tumors from patients who have undergone hormone deprivation therapy and found that a significant fraction of these specimens showed nuclear localization of ErbB3. We thus assessed the effect of androgens and the bone microenvironment on the nuclear translocation of ErbB-3 by using xenograft tumor models generated from bone-derived prostate cancer cell lines, MDA PCa 2b, and PC-3. In subcutaneous tumors, ErbB-3 was predominantly in the membrane/cytoplasm; however, it was present in the nuclei of the tumor cells in the femur. Castration of mice bearing subcutaneous MDA PCa 2b tumors induced a transient nuclear translocation of ErbB-3, with relocalization to the membrane/cytoplasm upon tumor recurrence. These findings suggest that the bone microenvironment and androgen status influence the subcellular localization of ErbB-3 in prostate cancer cells. We speculate that nuclear localization of ErbB-3 may aid prostate cancer cell survival during androgen ablation and progression of prostate cancer in bone.  相似文献   

10.
The invasive ability of tumor cells plays a key role in prostate cancer metastasis and is a major cause of treatment failure. Urokinase plasminogen activator-(uPA) and its receptor (uPAR)-mediated signaling have been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study was undertaken to investigate the biological roles of uPA and uPAR in prostate cancer cell invasion and survival, and the potential of uPA and uPAR as targets for prostate cancer therapy. uPA and uPAR expression correlates with the metastatic potential of prostate cancer cells. Thus, therapies designed to inhibit uPA and uPAR expression would be beneficial. LNCaP, DU145, and PC3 are prostate cancer cell lines with low, moderate, and high metastatic potential, respectively, as demonstrated by their capacity to invade the extracellular matrix. In this study we utilized small hairpin RNAs (shRNAs), also referred to as small interfering RNAs, to target human uPA and uPAR. These small interfering RNA constructs significantly inhibited uPA and uPAR expression at both the mRNA and protein levels in the highly metastatic prostate cancer cell line PC3. Our data demonstrated that uPA-uPAR knockdown in PC3 cells resulted in a dramatic reduction of tumor cell invasion as indicated by a Matrigel invasion assay. Furthermore, simultaneous silencing of the genes for uPA and uPAR using a single plasmid construct expressing shRNAs for both uPA and uPAR significantly reduced cell viability and ultimately resulted in the induction of apoptotic cell death. RNA interference for uPA and uPAR also abrogated uPA-uPAR signaling to downstream target molecules such as ERK1/2 and Stat 3. In addition, our results demonstrated that intratumoral injection with the plasmid construct expressing shRNAs for uPA and uPAR almost completely inhibited established tumor growth and survival in an orthotopic mouse prostate cancer model. These findings uncovered evidence of a complex signaling network operating downstream of uPA-uPAR that actively advances tumor cell invasion, proliferation, and survival of prostate cancer cells. Thus, RNA interference-directed targeting of uPA and uPAR is a convenient and novel tool for studying the biological role of the uPA-uPAR system and raises the potential of its application for prostate cancer therapy.  相似文献   

11.
12.
Molecular pathway for cancer metastasis to bone   总被引:14,自引:0,他引:14  
The molecular mechanism leading to the cancer metastasis to bone is poorly understood but yet determines prognosis and therapy. Here, we define a new molecular pathway that may account for the extraordinarily high osteotropism of prostate cancer. By using SPARC (secreted protein, acidic and rich in cysteine)-deficient mice and recombinant SPARC, we demonstrated that SPARC selectively supports the migration of highly metastatic relative to less metastatic prostate cancer cell lines to bone. Increased migration to SPARC can be traced to the activation of integrins alphaVbeta3 and alphaVbeta5 on tumor cells. Such activation is induced by an autocrine vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-2 loop on the tumor cells, which also supports the growth and proliferation of prostate cancer cells. A consequence of SPARC recognition by alphaVbeta5 is enhanced VEGF production. Thus, prostate cancer cells expressing VEGF/VEGFR-2 will activate alphaVbeta3 and alphaVbeta5 on their surface and use these integrins to migrate toward SPARC in bone. Within the bone environment, SPARC engagement of these integrins will stimulate growth of the tumor and further production of VEGF to support neoangiogenesis, thereby favoring the development of the metastatic tumor. Supporting this model, activated integrins were found to colocalize with VEGFR-2 in tissue samples of metastatic prostate tumors from patients.  相似文献   

13.
Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.  相似文献   

14.
15.
Prostate cancers of luminal adenocarcinoma histology display a range of clinical behaviors. Although most prostate cancers are slow-growing and indolent, a proportion is aggressive, developing metastasis and resistance to androgen deprivation treatment. One hypothesis is that a portion of aggressive cancers initiate from stem-like, androgen-independent tumor-propagating cells. Here we demonstrate the in vitro creation of a mouse cell line, selected for growth as self-renewing stem/progenitor cells, which manifests many in vivo properties of aggressive prostate cancer. Normal mouse prostate epithelium containing floxed Pten and TP53 alleles was subjected to CRE-mediated deletion in vitro followed by serial propagation as protospheres. A polyclonal cell line was established from dissociated protospheres and subsequently a clonal daughter line was derived. Both lines demonstrate a mature luminal phenotype in vitro. The established lines contain a stable minor population of progenitor cells with protosphere-forming ability and multi-lineage differentiation capacity. Both lines formed orthotopic adenocarcinoma tumors with metastatic potential to lung. Intracardiac inoculation resulted in brain and lung metastasis, while intra-tibial injection induced osteoblastic bone formation, recapitulating the bone metastatic phenotype of human prostate cancer. The cells showed androgen receptor dependent growth in vitro. Importantly, in vivo, the deprivation of androgens from established orthotopic tumors resulted in tumor regression and eventually castration-resistant growth. These data suggest that transformed prostate progenitor cells preferentially differentiate toward luminal cells and recapitulate many characteristics of the human disease.  相似文献   

16.
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.  相似文献   

17.
The majority of patients who succumb to cancer die from metastatic disease progression rather than from the primary tumor. Elucidation of the mechanisms underlying tissue-specific metastasis is essential to the development of effective therapies. The mitogen-activated protein kinase kinase (MEK) pathway is frequently activated in human tumors and has been shown to regulate genes involved in proliferation, migration, and invasion. Studies with MEK-transformed EpH4 mouse mammary epithelial cells showed that these cells are highly tumorigenic but have a limited metastatic ability. Detachment of epithelial cells from the extracellular matrix causes disruption of the actin cytoskeleton and induces apoptosis. Several metastatic breast carcinoma cell lines have been shown to be resistant to cell death following actin disruption. This death-resistant phenotype can be modeled by overexpressing the antiapoptotic Bcl-2 protein in cells. This suggests that mechanisms that regulate survival of extravasated tumor cells may enhance metastatic efficiency. Therefore, we examined whether expression of Bcl-2 in MEK-transformed EpH4 mammary epithelial cells could provide a survival advantage and promote metastasis. Expression of Bcl-2 in parental EpH4 mammary epithelial cells or MEK-transformed cells was insufficient to induce increased migration, invasion, or tumor development. However, Bcl-2 expression markedly enhanced spontaneous lung metastasis from orthotopically implanted primary tumors. These results clearly show that mechanisms that regulate primary tumor development are distinct from those that promote metastasis and that assays designed to isolate genes involved in transformation may fail to identify genes that are critical regulators of metastasis.  相似文献   

18.
Recent data strongly support the idea that the orchestrated interaction between cancer and other cells in the tumor microenvironment is a vital component in the neoplastic process. Thus, tumor cells take advantage of the signaling molecules of the immune system to proliferate, survive, and invade other tissues. CCL2 (Chemokine (C-C motif) ligand 2, Monocyte chemoattractant protein-1 (MCP-1) has been demonstrated to play a significant role in prostate cancer neoplasia and invasion, and is highly expressed in the tumor microenvironment. We recently reported that CCL2 elicits a strong survival advantage in prostate cancer PC3 cells through PI3K/Akt-dependent regulation of autophagy via the mammalian target of rapamycin (mTOR) pathway and importantly, survivin upregulation is essential in this survival mechanism. Autophagy protects cells from nutrient depletion stress, but, paradoxically, excessive autophagy will result in cell death. How these life or death decisions are regulated remains unclear. Here we discuss the function of survivin in the control of autophagy and the interaction between CCL2, survivin and autophagy in the complex program of tumor progression.  相似文献   

19.
Inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is heavily implicated in the tumorigenesis of prostate cancer. Conversely, the upregulation of the chemokine (CXC) receptor 4 (CXCR4) is associated with prostate cancer progression and metastasis. Studies have shown that loss of PTEN permits CXCR4-mediated functions in prostate cancer cells. Loss of PTEN function is typically due to genetic and epigenetic modulations, as well as active site oxidation by reactive oxygen species (ROS); likewise ROS upregulates CXCR4 expression. Herein, we show that ROS accumulation permitted CXCR4-mediated functions through PTEN catalytic inactivation. ROS increased p-AKT and CXCR4 expression, which were abrogated by a ROS scavenger in prostate cancer cells. ROS mediated PTEN inactivation but did not affect expression, yet enhanced cell migration and invasion in a CXCR4-dependent manner. Collectively, our studies add to the body of knowledge on the regulatory role of PTEN in CXCR4-mediated cancer progression, and hopefully, will contribute to the development of therapies that target the tumor microenvironment, which have great potential for the better management of a metastatic disease.  相似文献   

20.
Yes-associated protein (YAP) is an effector of the Hippo tumor suppressor pathway. The functional significance of YAP in prostate cancer has remained elusive. In this study, we first show that enhanced expression of YAP is able to transform immortalized prostate epithelial cells and promote migration and invasion in both immortalized and cancerous prostate cells. We found that YAP mRNA was upregulated in androgen-insensitive prostate cancer cells (LNCaP-C81 and LNCaP-C4-2 cells) compared to the level in androgen-sensitive LNCaP cells. Importantly, ectopic expression of YAP activated androgen receptor signaling and was sufficient to promote LNCaP cells from an androgen-sensitive state to an androgen-insensitive state in vitro, and YAP conferred castration resistance in vivo. Accordingly, YAP knockdown greatly reduced the rates of migration and invasion of LNCaP-C4-2 cells and under androgen deprivation conditions largely blocked cell division in LNCaP-C4-2 cells. Mechanistically, we found that extracellular signal-regulated kinase–ribosomal s6 kinase signaling was downstream of YAP for cell survival, migration, and invasion in androgen-insensitive cells. Finally, immunohistochemistry showed significant upregulation and hyperactivation of YAP in castration-resistant prostate tumors compared to their levels in hormone-responsive prostate tumors. Together, our results identify YAP to be a novel regulator in prostate cancer cell motility, invasion, and castration-resistant growth and as a potential therapeutic target for metastatic castration-resistant prostate cancer (CRPC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号