首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A23187 stimulated two enzymatic activities of human neutrophils (polymorphonuclear leukocytes), phospholipase A2 and fatty acyl-CoA acyltransferase, which resulted in a stimulated deacylation/reacylation cycle. The incorporation of fatty acids, other than arachidonic or eicosapentaenoic acid, into diacyl and alkylacyl species of choline phosphoglycerides was stimulated by 10-fold by A23187. These fatty acids were exclusively incorporated into the sn-2 position, and [3H]glycerol labeling showed there was no stimulation of de novo synthesis. A23187 also stimulated fatty acid incorporation into other phospholipids, but de novo synthesis accounted for a portion of this uptake. Inhibitors of protein kinase C prevented the stimulated recycling of phosphatidylcholine, and the simultaneous induction of platelet-activating factor synthesis, by inhibiting phospholipase A2 activation. They inhibited [3H]arachidonate release from prelabeled polymorphonuclear leukocytes, but had no effect on in vitro fatty acyl-CoA acyltransferase or acetyl-CoA acetyltransferase activity. Extracts from A23187-treated cells contained a fatty acyl-CoA acyltransferase, which did not utilize arachidonoyl-CoA, that was 2.3-fold more active than that of control extracts. Phosphatase treatment decreased this stimulated activity by 66%. Thus, A23187 stimulated a phospholipase A2 activity that generated both 1-alkyl and 1-acyl lysophosphatidylcholines. A stimulated acetyltransferase used a portion of the alkyl species for platelet-activating factor synthesis, while the acyl species and residual alkyl species were rapidly reacylated to phosphatidylcholine by a stimulated acyl-transferase. Arachidonate, an eicosanoid precursor, was spared by this process.  相似文献   

2.
Phospholipid fatty acid remodeling in mammalian cells.   总被引:13,自引:0,他引:13  
  相似文献   

3.
R D Adam 《Nucleic acids research》1992,20(12):3057-3061
Giardia lamblia trophozoites contain at least five sets of chromosomes that have been categorized by chromosome-specific probes. Pulsed field separations of G. lamblia chromosomes also demonstrated minor bands in some isolates which stained less intensely with ethidium than the major chromosomal bands. Two of the minor bands of the E11 clone of the ISR isolate, MBa and MBb, were similar to each other and to chromosomal band I by hybridization to total chromosomal DNA and by hybridization of specific probes. In order to determine the extent of this similarity, I have developed a panel of probes for many of the Pacl restriction fragments and have shown that most of the Pacl and Notl fragments found in MBa are also present in MBb. The differences are found in both telomeric regions. At one end, MBb contains a 300 kb region not found in MBa. At the other end of MBb is a 160 kb region containing the rDNA repeats which is bounded on one end by the telomeric repeat and on the other by sites for multiple enzymes that do not digest the rDNA repeats. The corresponding region of MBa is 23 kb in size. The size difference is consistent with the eightfold greater number of rDNA repeats in MBb than MBa and suggests that 30% of the size difference is accounted for by different numbers of copies of the rDNA repeat. MBa of another ISR clone (ISR G5) is 150 kb larger in size than MBa of ISR E11. The data suggest that MBa and MBb are homologous chromosomes of different sizes and that a portion of the size difference is accounted for by different copy numbers of the rDNA repeat.  相似文献   

4.
The turnover of phospholipids in Escherichia coli B/r was analyzed in synchronously growing populations. The turnover of presynthesized phosphatidyl-glycerol and cardiolipin continued at a constant exponential rate throughout the division cycle.  相似文献   

5.
6.
Stepwise changes in the rate of phosphatidylethanolamine and phospholipid synthesis during the cell division cycle of Escherichia coli B/r were observed. The cell ages at the increases were found to be a function of the growth rate. At each growth rate, the increase occurred around the time new rounds of chromosome replication were inaugurated in the cycle.  相似文献   

7.
The turnover of phospholipids plays an essential role in membrane lipid homeostasis by impacting both lipid head group and acyl chain composition. This review focusses on the degradation and acyl chain remodeling of the major phospholipid classes present in the ER membrane of the reference eukaryote Saccharomyces cerevisiae, i.e. phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Phospholipid turnover reactions are introduced, and the occurrence and important functions of phospholipid remodeling in higher eukaryotes are briefly summarized. After presenting an inventory of established mechanisms of phospholipid acyl chain exchange, current knowledge of phospholipid degradation and remodeling by phospholipases and acyltransferases localized to the yeast ER is summarized. PC is subject to the PC deacylation-reacylation remodeling pathway (PC-DRP) involving a phospholipase B, the recently identified glycerophosphocholine acyltransferase Gpc1p, and the broad specificity acyltransferase Ale1p. PI is post-synthetically enriched in C18:0 acyl chains by remodeling reactions involving Cst26p. PE may undergo turnover by the phospholipid: diacylglycerol acyltransferase Lro1p as first step in acyl chain remodeling. Clues as to the functions of phospholipid acyl chain remodeling are discussed.  相似文献   

8.
9.
Phospholipid flip-out controls the cell cycle of Escherichia coli   总被引:2,自引:0,他引:2  
Phospholipids are the principal constituents of biological membranes. In Escherichia coli, phospholipids are involved in the metabolism of other envelope constituents such as lipoprotein, lipopolysaccharide, certain envelope proteins and peptidoglycan. They are also involved in the regulation of the cell cycle. DNAA, the key protein in the initiation of chromosome replication, is activated by acidic phospholipids only when these are in fluid bilayers, whilst interruptions of phospholipid synthesis inhibit both the initiation of chromosome replication and cell division. The transmembrane movement or flip-flop of phospholipids from one monolayer to the other requires the passage of the polar head group through the hydrophobic core of the bilayer. Hence, in many systems, flip-flop is a slow process with half-time of days. Flip-flop accompanies the formation of non-bilayer structure. Such structures form under certain conditions of packing density and composition and have been observed both in vitro and in vivo. In bacteria, flip-flop appears to be extremely rapid, with half-times as fast as 3 min being observed. However, such rapid flip-flop may not be characteristic of all phospholipids. The asymmetrical distribution of phosphatidylethanolamine in the plasma membrane of Bacillus megaterium has been attributed to the existence of two classes of this phospholipid. In E. coli, studies of the metabolic turnover of phosphatidylserine, phosphatidylglycerol and phosphatidic acid also reveal the existence of distinct classes of these phospholipids. In this article I propose that, in E. coli, a class of phospholipids does indeed escape the rapid flip-flop mechanism; this class probably includes a subpopulation of the acidic phospholipids. Therefore during the cell cycle these phospholipids accumulate in the inner monolayer of the cytoplasmic membrane and so cause an increase in its packing density; at a critical density, phospholipids "flip out" from the inner to the outer monolayer. This flip-out occurs once per cycle and initiates cell cycle events.  相似文献   

10.
11.
Genome ploidy in different stages of the Giardia lamblia life cycle   总被引:2,自引:0,他引:2  
The early diverging eukaryotic parasite Giardia lamblia is unusual in that it contains two apparently identical nuclei in the vegetative trophozoite stage. We have determined the nuclear and cellular genome ploidy of G. lamblia cells during all stages of the life cycle. During vegetative growth, the nuclei cycle between a diploid (2N) and tetraploid (4N) genome content and the cell, consequently, cycles between 4N and 8N. Stationary phase trophozoites arrest in the G2 phase with a ploidy of 8N (two nuclei, each with a 4N ploidy). On its way to cyst formation, a G1 trophozoite goes through two successive rounds of chromosome replication without an intervening cell division event. Fully differentiated cysts contain four nuclei, each with a ploidy of 4N, resulting in a cyst ploidy of 16N. The newly excysted cell, for which we suggest the term 'excyzoite', contains four nuclei (cellular ploidy 16N). In a reversal of the events occurring during encystation, the excyzoite divides twice to form four trophozoites containing two diploid nuclei each. The formation of multiple cells from a single cyst is likely to be one of the main reasons for the low infectious doses of G. lamblia .  相似文献   

12.
The pathophysiological basis of heart failure is cardiac remodeling, a process that comprises structural and functional changes including cardiomyocyte proliferation, hypertrophy, necrosis, apoptosis, autophagy, interstitial fibrosis, contractile dysfunction and ventricular dilatation. Accumulating evidence demonstrate that tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is involved in the process by binding its receptor fibroblast growth factor-inducible molecule 14 (Fn14). In this review, we will discuss the potential role of the TWEAK/Fn14 axis in cardiac remodeling, elucidate its possible mechanisms and explore new therapeutic targets for heart failure.  相似文献   

13.
A role for decorin in the remodeling of myocardial infarction.   总被引:3,自引:0,他引:3  
Because the small leucine-rich proteoglycan decorin has been implicated in regulation of collagen fibrillogenesis leading to proper extracellular matrix assembly, we hypothesized it could play a key role in cardiac fibrosis following myocardial infarction. In this study we ligated the left anterior descending coronary artery in wildtype and decorin-null mice to produce large infarcts in the anterior wall of the left ventricle. At early stages post-coronary occlusion the myocardial infarction size did not appreciably differ between the two genotypes. However, we found a wider distribution of collagen fibril sizes with less organization and loose packing in mature scar from decorin-null mice. Thus, we tested the hypothesis that these abnormal collagen fibrils would adversely affect post-infarction mechanics and ventricular remodeling. Indeed, scar size, right ventricular remote hypertrophy, and left ventricular dilatation were greater in decorin-null animals compared with wildtype littermates 14 days after acute myocardial infarction. Echocardiography revealed depressed left ventricular systolic function between 4 and 8 weeks post-ischemia in the decorin-null animals. These changes indicate that decorin is required for the proper fibrotic evolution of myocardial infarctions, and that its absence leads to abnormal scar tissue formation. This might contribute to aneurysmal ventricular dilatation, remote hypertrophy, and depressed ventricular function.  相似文献   

14.
15.
Myristylated polyomavirus VP2: role in the life cycle of the virus.   总被引:10,自引:9,他引:1       下载免费PDF全文
The double-stranded genome of the small DNA tumor virus, polyomavirus, is enclosed in a capsid composed of a major protein, VP1, which associates as pentameric capsomeres into an icosahedral structure, and two minor proteins, VP2 and VP3, whose functions and positions within the structure are unknown. The N-terminal glycine of the VP2 coat protein has been shown to be cotranslationally acylated with myristic acid. To study the function of this modification and the role of VP2 in the life cycle of polyomavirus, the N-terminal glycine, critical to the myristylation consensus sequence, has been altered to a glutamic acid or a valine residue by site-directed oligonucleotide mutagenesis. The glycine----glutamic acid mutant DNA has been further studied. When transfected into cells permissive for the polyomavirus full lytic life cycle, this mutant DNA replicated at levels comparable to those of wild-type viral DNA, and small amounts of nonrevertant (mutant) virus could be harvested from the cultures. The virus particles viewed by electron microscopy appeared slightly distorted, but the ratio of full to empty particles was similar to that produced in a wild-type viral infection. Mutant virus was capable of reinfecting permissive cells but with a considerably reduced efficiency.  相似文献   

16.
17.
18.
The possibility that phospholipid polar heads may influence Fe2+ reaction with molecular oxygen and, thus, the generation of oxygen active species was investigated. Dipalmitoyl phosphatidylcholine (DPPC) and DPPC/dipalmitoyl phosphatidic acid (DPPA) were utilized as model liposomes. Fe2+ oxidation, oxygen consumption, nitro blue tetrazolium reduction and 2-deoxyribose degradation were the parameters evaluated. Comparison of the results obtained clearly shows that the two types of polar heads differently affect iron chemistry. DPPC liposomes are ineffective. By contrast, Fe2+ oxidation by oxygen occurs in the presence of DPPC/DPPA liposomes. During this reaction, species able to reduce nitro blue tetrazolium and to degrade 2-deoxyribose are generated. The results obtained indicate that the polar heads of phospholipids, by influencing Fe2+ autoxidation, generate dangerous oxygen species which may exert an active role in the oxidation of the associated hydrophobic components of the phospholipids.  相似文献   

19.
The nuclear matrix is an integral part of nuclear structure which undergoes a profound reorganization during the cell cycle reflecting major changes in functional requirements. This includes the processes of DNA replication and gene expression at interphase and partitioning of the nuclear contents during mitosis. Using a monoclonal antibody (mAb2A) which specifically stains a novel nuclear meshwork which reorganizes during the cell cycle in Drosophila, we have initiated a study to: 1) more closely analyze this structural reorganization; 2) clone and characterize the antigens recognized by this antibody; and 3) isolate other interacting proteins in order to gain insight into the regulation of this process. The mAb2A-labeled structure changes from what appears as a diffuse meshwork at interphase to a distinct spindle-like scaffold at prophase. Since at metaphase the microtubules of the mitotic apparatus co-localize with the mAb2A spindle structure, a model is considered whereby the nuclear mAb2A-labeled scaffolding reorganizes during the cell cycle to provide a guide for the establishment of the mitotic apparatus. The mAb2A has identified two separate antigens, each of which shows similar distribution patterns. One of these antigens has been partially cloned and contains an unusual tandem set-thr kinase domain. The association of this kinase homologue with a nuclear scaffold which reorganizes during the cell cycle suggests that it may be involved in regulating changes in nuclear architecture during the cell cycle and/or in mediating the downstream consequences of such changes. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号