首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gradually altered synthetic entities were employed as molecular probes, and arachidonic acid, ADP, human alpha-thrombin and the Ca2+ ionophore A23187 as aggregation-inducing agents, in a comprehensive study on the response profile of human blood platelets with an emphasis on the effects of exogenous and increased intracellular Ca2+. Corroborating further previous conclusions, some representative carbamoylpiperidine derivatives, at concentrations effecting substantial inhibition of ADP-induced aggregation, failed to retain that effect when 5.0 mM Ca2+ was introduced into the otherwise identical test medium; reference compounds chlorpromazine and propranolol registered corresponding inhibitory patterns. At increased concentrations the compounds' inhibitory potency was regenerated even in the presence of 5 mM Ca2+. In fact, in sufficiently high concentrations, the compounds were even capable of inhibiting aggregation elicited by 15 microM of the ionophore A23187; so did chlorpromazine and propranolol. Another set of congeners revealed the striking sensitivity of ionophore A23187-induced human blood platelet aggregation to the surface active potencies of inhibitor molecules. The loss in inhibitory potency was directly related to the lesser hydrophobic character of the molecule.  相似文献   

2.
3.
A method is described for isolating plasma membrane vesicles from bovine tracheal epithelium. The procedure yields highly purified apical membranes which are enriched 19-fold in the marker enzyme, alkaline phosphatase. Contamination of this fraction by other organelles is minimal. Basolateral membranes isolated from the same preparation have a 4-fold enrichment of (Na+ + K+)-ATPase and a 2-fold reduction in alkaline phosphatase specific activity compared to the starting material. Assays of Na+ uptake by the apical membrane vesicles demonstrate their suitability for transport studies. Transport of Na+ into an intravesicular space was demonstrated by (1) a linear inverse correlation between Na+ uptake and medium osmolarity; (2) complete release of accumulated Na+ by treatment with detergent; and (3) a marked temperature-dependence of Na+ uptake rate. Other features of Na+ transport were (1) inhibition by amiloride; (2) insensitivity to furosemide; and (3) anion-dependence of uptake rate with the following selectivity:SCN- greater than Cl- greater than gluconate-.  相似文献   

4.
Summary To study Cl conductive and cotransport mechanisms, primary cultures of canine tracheal cells were grown to confluency on thin glass cover slips and on porous filters. Transepithelial resistance was >100 ·cm2, and short circuit current (I sc=2–20 A/cm2), representing active secretion of Cl, increased >threefold with addition of 10 m isoproterenol to the serosal solution. Cells made transiently permeable in hypotonic solution were loaded with the Cl-sensitive fluorophore 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) (5mm, 4 min, 150 mOsm). The electrical properties of the cell monolayers were not altered by the loading procedure. Intracellular SPQ fluorescence was monitored continuously by epifluorescence microscopy (excitation 360±5 nm, emission>410 nm). SPQ leakage from the cells was <10% in 60 min at 37°C. Intracellular calibration of SPQ fluorescencevs. [Cl] (0–90mm) was carried out using high-K buffers containing the ionophores nigericin (5 m) and tributyltin (10 m); SPQ fluorescence was quenched with a Stern-Volmer constant of 13m –1. Intracellular Cl activity was 43±4mm. Cl flux was measured in response to addition and removal of 114mm Cl from the bathing solution. Addition of 10 m isoproterenol increased Cl efflux from 0.10 to 0.27mm/sec. The increase was inhibited by the Cl-channel blocker diphenylamine-2-carboxylic acid (1mm). In the absence of isoproterenol, removal of external Na or addition of 0.5mm furosemide, reduced Cl influx by >fourfold. In ouabain-treated monolayers, removal of external K in the presence of 5mm barium diminished Cl influx by >twofold, suggesting that Cl entry is in part K dependent. These results establish an accurate optical method for the realtime measurement of intracellular Cl activity in tracheal cells that does not require an electrically tight cell monolayer. The data demonstrate the presence of an isoproterenol-regulated Cl channel and a furosemide-sensitive cation-coupled transport mechanism.  相似文献   

5.
Summary Experiments were performed to determine the factors which contribute to the transmembrane pH gradient (pH) and the potential gradient () in apical plasma membrane vesicles isolated from bovine tracheal epithelium. As indicated by the accumulation of14C-methylamine, the vesicles maintained a pH (inside acidic) which was dependent upon the external pH. The pH was also proportional to the ionic strength of the suspending medium, suggesting that the H+ distribution was dictated by a Donnan potential. Measurements of the distribution of86Rb+ demonstrated an electrical potential gradient across the vesicle membrane, inside negative which was proportional to the medium ionic strength. pH changed in parallel with in response to a variety of imposed conditions. These results are compatible with the existence of a H+ conductance in the vesicle membrane. Thus the endogenous electrical and proton gradients may be manipulated and used as a general experimental tool to complement kinetic analysis in investigations of transport mechanism using isolated vesicle preparations.  相似文献   

6.
Summary Apical membrane vesicles from human term placenta were isolated using a magnesium precipitation technique, and the purity of the vesicles was assessed morphologically using scanning and transmission electron microscopy, and biochemically, using marker enzymes. The vesicles were found to be morphologically intact and significantly enriched in enzymes associated with apical membranes. 36Cl uptake into these vesicles was studied in the presence of an outwardly directed Cl gradient. This uptake was found to be time dependent, with an initial rapid uptake tending to peak between 10 and 20 min and thereafter decline. Uptake was found to be voltage dependent since 5 m valinomycin caused a decrease in uptake. The effects of N-phenylanthranilic acid (NPA) and 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS) and bumetanide on the initial rate of Cl were examined in the presence and absence of 5 m valinomycin. NPA and DIDS inhibited isotope uptake strongly with IC50 values of 0.83±0.35 m and 3.43±0.37 m, respectively, in the absence of valinomycin. Although valinomycin reduced 36Cl uptake by about 80% when added before the isotope, DIDS reduced the uptake which remained in a concentration-dependent fashion with an IC50 of 5.6±2.1 m. Under these conditions, NPA was without effect at concentrations below 100 m. Bumetanide was without effect at the concentrations used in the absence of valinomycin. However, following valinomycin pretreatment, bumetanide reduced 36Cl uptake significantly at 100 m concentration. Vesicle diameter, as assessed by flow cytometry, did not change under the conditions employed.The effects of some fatty acids were also investigated. Arachidonic acid and linoleic acid inhibited Cl uptake with IC50 values of 37.6±14.9 m and 4.59±0.51 m, respectively. Arachidonyl alcohol and elaidic acid were found to be without effect. These studies show that human placental brush border membrane vesicles possess a chloride conductance channel, the activity of which can be measured in the presence of an outwardly directed Cl gradient and this channel is sensitive to Cl channel inhibitors, especially N-phenylanthranilic acid, and can be inhibited by unsaturated fatty acids such as arachidonic acid and linoleic acid.This work was supported in part by the Cystic Fibrosis Association of Ireland and Eolas, The Irish Science and Technology Agency. The technical assistance of Mr. Cormac O' Connell in the preparation of the electron micrographs and of Mr. Roddy Monks in the flow cytometric analysis is gratefully acknowledged.  相似文献   

7.
Transport of the carcinogen benzo[a]pyrene in apical membrane vesicles (AMV) from normal human intestine, was investigated. Benzo[a]pyrene transport was found in AMV throughout the small intestine, but was greatest in colon. Evidence suggesting involvement of P-Glycoprotein (P-Gp), included (1) comparable transport of P-Gp substrate doxorubicin, (2) transport stimulation by ATP and (3) transport suppression by the P-Gp inhibitor, verapamil.  相似文献   

8.
Summary Canine tracheal epithelial cells were isolated by enzymatic and mechanical dispersion and cultured on permeable supports. The cells formed confluent monolayers and retained most of the morphologic characteristics of the intact epithelium, including apical microvilli, apical tight junctions, and a moderately interdigitated lateral intercellular space. The cells also retained the functional properties of the epithelium. The monolayer responded to addition of isoproterenol with the characteristic changes in cellular electrical properties expected for stimulation of Cl secretion: isoproterenol increased transepithelial voltage, depolarized apical membrane voltage, and decreased both transepithelial resistance and the ratio of apical-to-basolateral membrane resistance. Examination of the cellular response to ion substitutions and inhibitors of Cl secretion indicate that the cultured monolayers retain the same cellular mechanisms of ion transport as the intact epithelium. Thus, primary cultures of tracheal epithelium may provide a useful preparation for future studies of the mechanism and regulation of Cl secretion by airway epithelia.  相似文献   

9.
Summary Tracheal epithelial cells were grown on Nuclepore filters coated with human placental collagen. When grown immersed in medium containing fetal bovine serum, cells displayed an undifferentiated ultrastructure (no cilia and a cell height of ∼ 10 μm). Short-circuit current (Isc) was approximately 1/10 that of the native epithelium. By contrast, when grown in hormonally defined, serum-free medium with an air interface, cells showed Isc equal to or greater than the original tissue, possessed cilia, and had a cell height of ∼ 50 μm. Responses in Isc to mediators were similar to those of the original tissue, but differed from those of dog or human tracheal epithelium. Given the ready availability and low cost of the native tissues, bovine tracheal cultures grown in serum-free medium with an air interface should prove useful in studies of airway epithelial physiology.  相似文献   

10.
Summary Canine tracheal epithelium secretes Cl from the submucosal to the mucosal surface via an electrogenic transport process that appears to apply to a wide variety of secretory epithelia. Cl exit across the apical membrane is thought to be a passive, electrically conductive process. To examine the cellular mechanism of Cl secretion we studied the effect of anthracene-9-carboxylic acid (9-AC), an agent known to inhibit the Cl conductance of muscle membrane. When added to the mucosal solution, 9-AC rapidly and reversibly decreases short-circuit current and transepithelial conductance, reflecting a reduction in electrogenic Cl secretion. The inhibition is concentration-dependent and 9-AC does not appear to compete with Cl for the transport process. The decrease in current and conductance results from a decrease in the net and both unidirectional transepithelial Cl fluxes without substantial alterations of Na fluxes. Furthermore, 9-AC specifically inhibits a Cl conductance: tissues bathed in Cl-free solutions showed no response to 9-AC. Likewise, when the rate of secretion and Cl conductance were minimized with indomethacin, addition of 9-AC did not alter transepithelial conductance. In contrast, neither removal of Na from the media nor blockade of the apical Na conductance with amiloride prevented a 9-AC-induced decrease in transepithelial conductance. We also found that the effect of 9-AC is independent of transepithelial transport: 9-AC decreases transepithelial conductance despite inhibition of Cl secretion with ouabain or furosemide. Intracellular electrophysiologic techniques were used to localize the effect of 9-AC to a reduction of the electrical conductance of the apical cell membrane: 9-AC hyperpolarizes the electrical potential difference across the apical membrane and decreases its relative conductance. 9-AC also prevents the characteristic changes in the cellular electrical potential profile, transepithelial conductance, and the ratio of membrane conductances produced by a reduction in mucosal bathing solution Cl concentration. These results indicate that 9-AC inhibits Cl secretion in tracheal epithelium by blocking an electrically conductive Cl exit step in the apical cell membrane. Thus, they support a cellular model of Cl secretion in which Cl leaves the cell across a Cl permeable apical membrane driven by its electrochemical gradient.  相似文献   

11.
Summary The role of adenosine 3,5-monophosphate (cAMP) dependent protein kinase (PK-A) on the Cl conductance has been studied in the apical membrane vesicles purified from the chorionic villi of human placenta. In order to phosphorylate the cytosolic side of the membranes, vesicles have been hypotonically lysed, loaded with 100nm catalytic subunit of PK-A purified from human placenta and 1mm of the phosphatase resistant adenosine 5-thiotriphosphate (ATP-gamma-S) and resealed. Cl conductance has been measured by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) at 23°C with membrane potential clamped at 0 mV. The actual volume of the resealed vesicles was measured in each experiment by trapping an impermeable radioactive molecule ([14C]-sucrose) and included in each Cl flux calculation. In 19 independent experiments, the mean Cl conductance in placental membranes in the absence of phosphorylation was 3.67±3.18 whereas with the addition of PK-A and ATP-gamma-S it was 1.97±1.75 nmol·sec–1·(mg protein)–1 (mean±sd). PK-A dependent phosphorylation reduced the Cl conductance in 14/19 experiments. The same protocol applied to the apical membranes of bovine trachea, where PK-A is known to activate the Cl channels, confirmed that the PK-A dependent phosphorylation increased the Cl conductance in 11/13 experiments, from 1.01±0.61 to 1.85±0.99 nmol·sec–1·(mg protein)–1(mean±sd). These studies indicate that the PK-A dependent phosphorylation inhibits one or more Cl channel(s) of the apical membranes of human placenta.  相似文献   

12.
Previous evidence suggests that the molecular defect in cystic fibrosis (CF) could reside in an altered chloride conductance of epithelial tissues. Since the brush border of the syncytiotrophoblast of the chorionic villi of human placenta is an abundant source of epithelial membranes and it is unaltered by secondary pathology or treatment we chose to characterize its chloride conductance and to compare it in normal and CF membranes. Chloride transport was studied in microvillar vesicles (MVV) by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Chloride conductance at 23 degrees C: (a) increased by 39% under a membrane potential change of 70 mV; (b) was inhibited by diphenylamine 2-carboxylate (Ki = 150 microM); (c) displayed an activation energy of 3.5 kcal.mol-1. The comparison of the chloride conductance for an inwardly directed gradient of 150 mM Cl- at 23 degrees C (membrane potential set at 0 mV) between CF and control membranes was not significantly different. These findings demonstrate the presence of a chloride conductive pathway in microvillar vesicles from human placenta and preliminary results exclude major differences in the conductance of CF derived material in the absence of neurohormonal stimuli.  相似文献   

13.
The Thermofluor assay has been a valuable asset in structural genomics, providing a high-throughput method for assessing the crystallizability of proteins. The technique has been well characterized for soluble proteins but has been less extensively described for membrane proteins. Here we show the successful application of a Thermofluor-based stability assay to an ion channel, CorA from Methanococcus jannaschii. Optimization of the concentration of free detergent within the assay was important, as excessive concentrations mask the fluorescence change associated with thermal unfolding of the protein. CorA was shown to be stabilized by low pH, but relatively insensitive to salt concentration. Divalent metal cations were also capable of stabilizing the protein, in the order Co2+>Ni2+>Mn2+>Mg2+>Ca2+. Finally, removal of the oligohistidine tag was also shown to improve the thermal stability of CorA. Conclusions are drawn from this detailed study about the general applicability of this technique to other membrane proteins.  相似文献   

14.
Tyrosine uptake by membrane vesicles derived from rat brain has been investigated. The uptake is dependent on an Na+ gradient ([Na+]outside > [Na+]inside). The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The process is stimulated by a membrane potential (negative inside) as demonstrated by the effect of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tyrosine is accumulated by two systems with different affinities. Tyrosine uptake is inhibited by the presence of phenylalanine and tryptophan.  相似文献   

15.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

16.
Summary Chloride-selective ion channels were measured from isolated rat liver nuclei. Single ion channel currents were recorded in both nuclear-attached and in excised patches in the insideout configuration of the patch-clamp technique. Two types of chloride conductance were defined, a large conductance (150 pS;i Cl.N ) channel with complex kinetics and multiple substates, and a second smaller conductance (58 pS;I Cl.n ) channel sensitive to block by ATP. The channels were inhibited by pharmacological agents known to block chloride channels and were insensitive to internal and external changes in calcium and magnesium. Presumably the channels reside in the external membrane of the nuclear double membrane and may mediate charge balance in the release and uptake of calcium from the perinuclear space.  相似文献   

17.
Summary We measured the short-circuit current (I sc) across canine tracheal epithelium and the intracellular cAMP levels of the surface epithelial cells in the same tissues to assess the role of cAMP as a mediator of electrogenic Cl secretion. Secretogogues fall into three classes: (i) epinephrine, prostaglandin (PG) E1, and theophylline increase bothI sc and cellular cAMP levels; (ii) PGF2 and calcium ionophore A23187, increaseI sc without affecting cell cAMP levels at the doses employed; and (iii) acetylcholine, histamine, and phenylephrine do not alter eitherI sc or cAMP levels.These findings indicate that: (i) increases in cAMP or Ca activity stimulate electrogenic Cl secretion by the columnar cells of the surface epithelium; (ii) cAMP mediates the effects of PGE1 and -adrenergic agonists; (iii) a strict correlation between cAMP levels and Cl secretion rate is not apparent from spontaneous variations in these parameters or from dose-response relations ofI sc and cAMP to epinephrine concentration; and (iv) acetylcholine, histamine, and phenylephrine, agents that stimulate electrically-neutral NaCl secretion by submucosal glands, do not evoke cAMP-mediated, responses by the surface epithelium.Addition of 10–6 m indomethacin (or other prostaglandin synthesis inhibitors) to the mucosal solution decreasesI sc and cellular cAMP levels and reduces the release of PGE2 into the bathing media by 80%. Indomethacin does not interfere with the subsequent secretory response to PGE1. This suggests that endogenous prostaglandin production underlies the spontaneous secretion of Cl across canine tracheal epithelium under basal conditions.  相似文献   

18.
Summary We used intracellular microelectrode techniques to study the mechanisms responsible for Cl secretion by canine tracheal epithelium. Tissues were treated with indomethacin (10–6 m, added to the mucosal solution) to reduce the baseline rate of Cl secretion and then stimulated by addition of epinephrine (10–6 m) or prostaglandin E1 (10–6 m) to the submucosal solution.Three conclusions emerged from our findings: First, secretagogues enhance the rate of transepithelial Cl transport primarily by increasing apical membrane Cl permeability, since: (i) stimulation of secretion produced parallel decreases in transepithelial resistance (R t) and the membrane resistance ratioR a/Rb, whereR a andR b refer to the resistances of the apical and basolateral membranes; (ii) there was an inverse relation between the short-circuit current andR a/Rb; (iii) secretagogues depolarized the electrical potential difference across the apical membrane (a) and produced an equivalent hyperpolarization of the transepithelial electrical potential difference (1) so that, in the steady-state, the basolateral membrane potential (b) was unchanged; and (iv) substitution of sulfate or gluconate for Cl in the bathing solutions prevented secretagogue-induced changes inR t, Ra/Rb, (a) and (1).Second, Cl entry into the cell across the basolateral membrane appears to be electrically-neutral since omission of Cl from the submucosal solution had no effect on (b) and did not decreaseR a/Rb as would be expected if Cl entered the cell by a conductive process.Third, secretagogues decreaseR b. Approximately 20 sec after the onset of the secretory responseR a/Rb underwent a secondary increase whileR t continued to fall. The decrease inR b may reflect an increase in basolateral membrane K permeability.  相似文献   

19.
Summary We examined the effect of adrenergic agents on the cellular electrical properties of primary cultures of canine tracheal epithelium. Both isoproterenol and epinephrine stimulated Cl secretion, as evidenced by an increase in transepithelial voltage and a fall in transepithelial resistance. Moreover, both agents appear to increase the conductance of apical and basolateral membranes. However, the pattern of response was different. Isoproterenol initially depolarized apical voltage a and decreased the fractional resistance of the apical membranef R. These changes are consistent with an initial increase in apical Cl conductance. In contrast, epinephrine acutely hyperpolarized a and increasedf R, changes consistent with an initial increase in basolateral K conductance. Following the acute effect of epinephrine, a depolarized andf R decreased to values not significantly different from those observed with isoproterenol. The acute increase in basolateral K conductance produced by epinephrine appeared to result from stimulation of adrenergic receptors because it was reproduced by addition of the agonist phenylephrine, and blocked by the antagonist phentolamine. The ability of prazosin but not yohimbine to block the acute epinephrine-induced increase in K permeability indicates the presence of 1 adrenergic receptors. The acute adrenergic-induced increase in basolateral K conductance may be mediated by an increase in cell Ca because the response was mimicked by addition of the Ca ionophore A23187. In contrast, the response to isoproterenol was similar to that observed with addition of 8-bromo-cAMP and theophylline. These results indicate that both and adrenergic agents mediate the ion transport processes in canine tracheal epithelium. adrenergic agents have their primary effect on the apical Cl conductance, probably via an increase in cAMP. adrenergic agents exert their primary effect on the basolateral K conductance, possibly via an increase in cell Ca.  相似文献   

20.
The dog tracheal epithelium actively secretes Cl and absorbs Na. The possible dependency of this electrolyte transport on a Mg-dependent, Na-K-activated adenosine triphosphatase (Na-K-ATPase, EC 3.6.1.3) was examined. The characteristics of this enzyme system were investigated using homogenates of tracheal epithelium. The electrical properties and ion fluxes of this epithelium were determined in tissues mounted in Ussing chambers. Addition of Na and K produced an approximate 50% activation of basal Mg-ATPase activity. The apparent Km values for ATP, Na, K, and Mg were 0.4, 12.7, 1.9, and 1.6 mM, respectively. The total specific ATPase activity was 8.1 +/- 0.4 and that of the Mg-ATPase 4.3 +/- 0.1 mumol Pi. mg protein -1.h-1. Addition of ouabain (1 muM) or omission of K from the submucosal bathing solution reduced potential difference (PD) and short-circuit current (SCC) significantly. Relatively low concentrations (0.1 mM or less) of ethacrynic acid, furosemide, or 2,4-dinitrophenol (2,4-DNP) depressed SCC and PD significantly, i.e., at concentrations that were without effect on the Na-K-ATPase activity. Ethacrynic acid inhibited Cl secretion, whereas 2,4-DNP lowered both Na and Cl transport. These data demonstrate that 1) the tracheal mucosa of dogs contains a Na-K-ATPase at relatively high specific activity, 2) this enzyme is likely contained in the basal aspect of this membrane, 3) it appears to be essential for maintenance of Cl secretion, and 4) Cl secretion can be reduced (by ethacrynic acid, furosemide, and 2,4-DNP) without Na-K-ATPase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号