首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A morphological parameter of polygonal index was defined as the ratio of cell adhesion area versus the square of the major cell axis, and cells that had an adhesion area larger than 4000 mum(2) and a polygonal index larger than 0.3 were considered large polygonal cells. Cell morphology tended to change from fibroblast-like to polygonal and the percentage of the large polygonal cells increased almost in proportion to aggrecan mRNA expression level during the differentiation culture of mesenchymal stem cells (MSCs) to chondrocytes. Approximately 80% of the large polygonal cells were negative for MSC marker (CD90, CD166) expression and the aggrecan mRNA expression level of the large polygonal cells was markedly higher than that of cells with other morphologies.  相似文献   

3.
4.
5.
Biomechanics and Modeling in Mechanobiology - The role of the growth plate reserve zone is not well understood. It has been proposed to serve as a source of stem cells and to produce morphogens...  相似文献   

6.
7.
8.
9.
Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.  相似文献   

10.
Summary Male Wistar-Kyoto rats were given either tap water (control) or 3%-alanine (taurine-depleted) for three weeks. To prepare for the kidney function studies, the animals were then implanted with femoral vessels and bladder catheters. Two days after surgery, each rat was given an intravenous infusion of saline at the rate of 50l/min and urine samples were collected at specific time intervals. An isotonic saline solution (0.9% NaCl) was infused for determination of baseline parameters and was followed by the infusion of a hypotonic saline solution (0.45% NaCl). Two days later, the infusion protocol was repeated in the same animals; however, a hypertonic saline solution (1.8% NaCl) was substituted for the hypotonic saline solution. Renal excretion of fluid and sodium increased in the control, but not taurine-depleted, rats during the hypotonic saline infusion. Interestingly, diuretic and natriuretic responses were similar between the groups during hypertonic saline infusion. The results suggest that taurine-depletion in rats affects renal excretory responses to a hypotonic, but not a hypertonic, saline solution.  相似文献   

11.
Wang CC  Guo XE  Sun D  Mow VC  Ateshian GA  Hung CT 《Biorheology》2002,39(1-2):11-25
A non-invasive methodology (based on video microscopy, optimized digital image correlation and thin plate spline smoothing technique) has been developed to determine the intrinsic tissue stiffness (H(a)) and the intrinsic fixed charge density (c(0)(F)) distribution for hydrated soft tissues such as articular cartilage. Using this technique, the depth-dependent inhomogeneous parameters H(a)(z) and c(0)(F)(z) were determined for young bovine cartilage and incorporated into a triphasic mixture model. This model was then used to predict the mechanical and electrochemical events (stress, strain, fluid/osmotic pressure, and electrical potentials) inside the tissue specimen under a confined compression stress relaxation test. The integration of experimental measurements with theoretical analyses can help to understand the unique material behaviors of articular cartilage. Coupled with biological assays of cell-scale biosynthesis, there is also a great potential in the future to study chondrocyte mechanotransduction in situ with a new level of specificity.  相似文献   

12.
Glucocorticoids (GC) are commonly used anti-inflammatory drugs, but long-term use can result in marked growth retardation in children due to their actions on growth plate chondrocytes. To gain an insight into the mechanisms involved in GC-induced growth retardation, we performed Affymetrix microarray analysis of the murine chondrogenic cell line ATDC5, incubated with 10(-6) M dexamethasone (Dex) for 24 h. Downregulated genes included secreted frizzled-related protein and IGF-I, and upregulated genes included serum/GC-regulated kinase, connective-tissue growth factor, and lipocalin 2. Lipocalin 2 expression increased 40-fold after 24-h Dex treatment. Expression increased further after 48-h (75-fold) and 96-h (84-fold) Dex treatment, and this response was Dex concentration dependent. Lipocalin 2 was immunolocalized to both proliferating and hypertrophic growth plate zones, and its expression was increased by Dex in primary chondrocytes at 6 h (3-fold, P < 0.05). The lipocalin 2 response was blocked by the GC-receptor antagonist RU-486 and was increased further by the protein synthesis blocker cycloheximide. Proliferation in lipocalin 2-overexpressing cells was less than in control cells (49%, P < 0.05), and overexpression caused an increase in collagen type X expression (4-fold, P < 0.05). The effects of lipocalin 2 overexpression on chondrocyte proliferation (64%, P < 0.05) and collagen type X expression (8-fold, P < 0.05) were further exacerbated with the addition of 10(-6) M Dex. This synergistic effect may be explained by a further increase in lipocalin 2 expression with Dex treatment of transfected cells (45%, P < 0.05). These results suggest that lipocalin 2 may mediate Dex effects on chondrocytes and provides a potential novel mechanism for GC-induced growth retardation.  相似文献   

13.
In sections of KMnO(4)-fixed, developing mouse sciatic nerves, the central gap of mesaxons in myelinating fibers is normally closed with close apposition of the outside approximately 20 A dense strata of the two approximately 75 A Schwann cell membranes. The two combined outside strata make the intraperiod line bisecting each myelin lamella. The approximately 150 A mesaxon is elaborated spirally around the axon in either a right hand or left hand spiral, and its inside (cytoplasmic) approximately 20 A strata in apposition form the major dense lines of myelin. In hypotonic solutions the lamellae of adult frog sciatic myelinated fibers split apart along the outside membrane strata apposed at the intraperiod line throughout the spiral. Under similar conditions the inside (cytoplasmic) strata of the membranes, in apposition at the major dense lines, do not separate. The approximately 150 A membranous structure resulting from this is called an "internal compound membrane." The double membranes of normal and control frog sciatic unmyelinated fibers have a central gap approximately 100 to 150 A wide. After soaking in 4 to 10 times normal strength Ringer solution or 10 N sucrose-Ringer solution, this gap closes and a membranous structure approximately 150 A wide resembling developing mouse mesaxons results. This is designated by the term "external compound membrane." The latter membranes resemble internal compound membranes, but their central dense zones, each consisting of two apposed outside membrane strata, are less dense.  相似文献   

14.
15.
16.
Three‐dimensional (3D) culture has been shown to improve pluripotent gene expression in mesenchymal stem cells (MSCs), but the underlining mechanisms were poorly understood. Here, we found that the relaxation of cytoskeleton tension of MSCs in 3D culture was critically associated with the expressional up‐regulation of Nanog. Cultured in spheroids, MSCs showed decreased integrin‐based cell–matrix adhesion but increased cadherin‐based cell–cell interaction. Different from that in 2D culture, where MSCs exhibited branched and multiple‐directed F‐actin stress bundles at the cell edge and strengthened stress fibres transversing the cell body, MSCs cultured in spheroids showed compact cell body, relaxed cytoskeleton tension with very thin cortical actin filament outlining the cell, and increased expression of Nanog along with reduced levels of Suv39h1 (H3K9 methyltransferase) and H3K9me3. Notably, pharmaceutical inhibition of actin polymerization with cytochalasin D or silencing Suv39h1 expression with siRNA in 2D‐cultured MSCs elevated the expression of Nanog via H3K9 demethylation. Thus, our data suggest that 3D culture increases the expression of Nanog through the relaxation of actin cytoskeleton, which mediates reduced Suv39h1 and H3K9me3 levels.  相似文献   

17.
Osmotic adaptation in a mouse embryo blastomere has been studied by direct measurement of the cell volume using microtomography (laser scanning microscopy followed by quantitative 3D reconstruction). Embryo cells subjected to hypotonic shock first swelled but then returned to the initial size. At the beginning of osmotic stress, the swelling obeyed the van’t Hoff equation with a water permeability coefficient of 0.4 μm min−1 atm−1. The regulatory volume decrease was not abolished by Na+/K+-ATPase inhibition.  相似文献   

18.
The aim of this study was to investigate the effect of hydrostatic pressure on the expression of messenger ribonucleic acid (mRNA) for specific extracellular matrix proteins in chondrocytes. Chondrocytes obtained from bovine metatarsophalangeal joints were embedded in cylindrical 2% agarose gels. A novel experimental system was used to apply 5 MPa of static hydrostatic pressure to these chondrocytes for 4 hours. The application of hydrostatic pressure caused a significant increase in the level of aggrecan mRNA by almost four fold (p<0.01) as well as a 50% increase in the level of type II collagen mRNA (p<0.05). However, there was no significant change in the level of TIMP-1 mRNA. It was suggested that the application of hydrostatic pressure, in the absence of cell deformation, can bring about changes in the matrix components which may play an important role in the homeostasis and mechanical properties of articular cartilage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号