首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The families Rhyacophilidae and Glossosomatidae (Trichoptera) are considered to be the most primitive ones within the order. We examined the spermatozoa of members of these families to see whether their ultrastructure is consistent with an ancestral position. Axonemal structures, after fixation with a tannic acid-containing fixative, have been shown to be particularly useful as taxonomical indicators. It was found that 4 members of Rhyacophilidae, representing 3 subgenera (Rhyacophila, Pararhyacophila, and Hyporhyacophila) all have motile spermatozoa, with a 9 + 9 + 2 axoneme in which inner (but no outer) dynein arms are present. The accessory tubules have a wall consisting of 17 protofilaments, decreasing to 16 near the distal end, whereas the examined member of Glossosomatidae, Catagapetus nigrans, has accessory tubules with 18 protofilaments and a 9 + 9 + 2 axoneme with inner dynein arms and with motility similar to the Rhyacophilidae. Sperm motility is consistent with the inclusion of these 2 families within the suborder Integripalpia, and the axonemal pattern 9 + 9 + 2 indicates that the families indeed occupy a primitive position within Trichoptera.  相似文献   

2.
Characters currently used in phylogenetic analyses are insufficient for determining the status of several families of the order Trichoptera (caddisflies). Comparative spermatology can contribute to solving this problem. In the suborder Integripalpia, the sperm axoneme displays the pattern of 9 + 2 pairs of parallel microtubules found in many animal species. In the suborder Annulipalpia, however, axonemes bear remarkable aberrations. Consistently, in Chimarra florida (Philopotamidae, Annulipalpia) we found that the number of central microtubules varies from zero to four in axonemes of the spermatids and that spermatozoa lack axonemes. We propose that, similarly, the axoneme pattern became unstable in the Annulipalpia ancestor, from which branched two phylogenetic lines having different kinds of axoneme aberrations: (a) families in which the number of central microtubules of the axoneme exceeds two (e.g., Philopotamidae, Polycentropodidae) and (b) families in which the number of central microtubules of the axoneme does not exceed two (e.g., Hydropsychidae).  相似文献   

3.
The Trichoptera, or caddisflies, are traditionally split into two taxonomic subdivisions: the ‘retreat-making’ Annulipalpia and the ‘case-making’ Integripalpia (sensu Ross). The monophyly of these groups is well documented; however, the establishment of a third subdivision, ‘Spicipalpia’, and the positions of the five ‘spicipalpian’ families is much debated. In contrast to previous molecular studies using nuclear ribosomal RNA, a recent trichopteran study (using nuclear protein-coding genes) placed one of these ‘spicipalpian’ families, the free-living predatory Rhyacophilidae, as the sister taxon to the rest of Trichoptera, a result that has significant implications for both the understanding of trichopteran evolution and its timing. This paper sets out to investigate the relationships of Trichoptera using several newly sequenced genes, together with previously published gene sequences. This dataset is the largest trichopteran dataset to date, covering six independent genes and > 10 000 nucleotides, and containing 185 species representing 49 families. With all data included, likelihood and Bayesian analyses support a monophyletic Annulipalpia and a monophyletic Integripalpia, which includes the ‘spicipalpians’ as a paraphyletic grade at the base of this clade. However, an analysis of the protein-coding data alone using similar analytical methods recovers Rhyacophilidae as the most basal taxon in Trichoptera, with low support. A reanalysis correcting for nucleotide composition bias provides support for the placement of the ‘spicipalpian’ taxa as sister to the Integripalpia, consistent with the total data analysis, suggesting that the basal position of Rhyacophilidae in the uncorrected analysis could be (or is probably) an artefact of base composition. We find it likely that ancestral trichopterans made incipient cases and retreats, and these had independent origins as precocious pupal chambers. Molecular dating analysis in beast , using the birth-death model of speciation, with a relaxed-clock model of sequence evolution informed by 37 fossil constraints, suggests that the most recent common ancestor of Trichoptera appeared in the Permian (c. 275 Ma) in line with the first appearance of Trichoptera in the fossil record, and that vicariance explains the distribution of most trichopteran taxa. A new infraordinal name, Phryganides , is introduced for the tube-case-making families of Integripalpia.  相似文献   

4.
The abdominal lateral line system in Trichoptera, consisting of filaments and lamellae with associated primary and secondary setae, was studied in larvae and pupae of 70 genera representing 26 families. Filaments are slender, generally bifid, tubular extensions of the cuticle that together form a fringe on the lateral abdominal surface of larvae and pupae of many but not all families of case-making Trichoptera (Integripalpia). Larvae and pupae of the Annulipalpia and Spicipalpia lack a lateral fringe of bifid filaments, but single filaments occur in larvae of a few unrelated genera. A lateral fringe may help in regulating the flow of water which is maintained through the case by abdominal undulation. Lamellae occur only in larvae of the Integripalpia, where they are variously distributed among families and genera, and probably have a sensory function. Three types of lamellae are recognized: forked, serrate and single. Filaments and lamellae have significant taxonomic value, and their patterns of occurrence raise questions about the phylogeny of Trichoptera.  相似文献   

5.
Phylogeny of caddisflies (Insecta, Trichoptera)   总被引:2,自引:0,他引:2  
Trichoptera are holometabolous insects with aquatic larvae that, together with the Lepidoptera, comprise the Amphiesmenoptera. Previous phylogenetic hypotheses and progress on our ongoing data collection are summarized. Fragments of the large and small subunit nuclear ribosomal RNAs (D1, D3, V4–5), the nuclear elongation factor 1 alpha gene and a fragment of mitochondrial cytochrome oxidase 1 (COI) were sequenced, and molecular data were combined with previously published morphological data. Equally and differentially weighted parsimony analyses were conducted in order to present a phylogeny of Trichoptera, including 43 of 45 families. Our phylogeny closely resembles that proposed by Herbert Ross with respect to the relationships among suborders, with a monophyletic Annulipalpia at the base of the tree, and a clade consisting of Spicipalpia plus a monophyletic Integripalpia. The monophyly of Spicipalpia is weakly supported in the combined equally weighted analysis, and Spicipalpia is paraphyletic in the differentially weighted analysis. Within Integripalpia, our phylogeny recovered monophyletic Plenitentoria, Brevitentoria and Sericostomatoidea. Leptoceroidea was unresolved in the equally weighted analysis and monophyletic in the differentially weighted analysis. Within Annulipalpia, we recovered a basal but paraphyletic Philopotamoidea and a monophyletic Hydropsychoidea.  相似文献   

6.
Several orders of morphologically four‐winged insects have evolved mechanisms that enforce a union between the mesothoracic and metathoracic wings (forewings and hindwings) during the wing beat cycle. Such mechanisms result in a morphologically tetrapterous insect flying as if it were functionally dipterous, and these mechanisms have been described for several insect orders. The caddisfly suborders Annulipalpia and Integripalpia (Trichoptera) each have evolved a wing coupling apparatus, with at least three systems having evolved within the suborder Annulipalpia. The comparative and inferred functional morphology of the putative wing coupling mechanisms is described for the annulipalpian families Hydropsychidae (subfamilies Macronematinae and Hydropsychinae), Polycentropodidae and Ecnomidae, and a novel form‐functional complex putatively involved with at‐rest forewing‐forewing coupling is described for Hydropsychidae: Smicrideinae. It is proposed that the morphology of the wing coupling apparatuses of Hydropsychinae and Macronematinae are apomorphies for those clades. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Adopting the cladistic method in comparative embryology, 27 embryonic characters were analyzed to reconstruct the phylogenetic relationships among the lepidopteran and trichopteran suborders, viz., Annulipalpia, Integripalpia, Zeugloptera, Dacnonypha, Exoporia, Monotrysia, and Ditrysia. The resultant cladogram is basically coincident with that proposed by Kristensen . The order Trichoptera and Lepidoptera constitute a monophyletic group on the basis of one synapomorphy, the presence of well developed silk glands in embryos. The Trichoptera are separable from the Lepidoptera by the states of four characters. The Trichoptera, as a whole, are quite homogenous, and embryological data provide no rational ground for the separation of this order into the Annulipalpia and Integripalpia at a subordinal level. On the contrary, the embryonic development of the Lepidoptera becomes divergent from the most primitive condition to a specialized one according to suborders. The Zeugloptera are the sister group of all other Lepidoptera, because they share two apomorphies with the latter. The Dacnonypha are the most primitive next to the Zeugloptera, and have a sister-group relationship with the Exoporia + (Monotrysia + Ditrysia), being held together with the latter by five synapomorphies. Although the Exoporia retain almost as many plesiomorphic characters as the Dacnonypha, they have a sister-group relationship with the Monotrysia + Ditrysia, as inferred on the basis of two synapomorphies. The Monotrysia and Ditrysia have a sistergroup relationship, and are the most advanced groups in the Lepidoptera judging from their shared acquisition of many apomorphic characters.  相似文献   

8.
Spermatozoa from 9 species belonging to 3 families of trichopteran suborder Annulipalpia (Philopotamidae : Philopotamus ludificatus, P. montanus, Wormaldia occipitalis, W. copiosa; Polycentropodidae: Plectrocnemia geniculata, Polycentropus mortoni, P. irroratus, Cyrnus trimaculatus; Hydropsychidae: Hydropsyche pellucidula) were studied by light, scanning, and transmission electron microscopy. The absence of axonemal dynein arms and a consequent sperm immotility are characteristic of the species studied. The presence of 7, rather than 2, central microtubules is shared by Polycentropodidae and some Philopotamidae. A greater variability in the sperm axoneme was found within Philopotamidae than in the other families. The species of the genus Wormaldia have an axial vesicle rather than microtubules and their axonemes have a 9 + 9 + 0 or 13 + 13 + 0 pattern. Hydropsychidae have spermatozoa provided with numerous finger-like appendages containing microtubular doublets. The progressive loss of sperm flagellum and motility within the group is discussed.  相似文献   

9.
The insect order Trichoptera (caddisflies) forms the second most species‐rich monophyletic group of animals in freshwater. So far, several attempts have been made to elucidate its evolutionary history with both morphological and molecular data. However, none have attempted to analyse the time frame for its diversification. The order is divided into three suborders – Annulipalpia, Integripalpia and ‘Spicipalpia’. Historically, the most problematic taxon to place within the order is ‘Spicipalpia’, whose larvae do not build traditional cases or filtering nets like the majority of the caddisflies. They have previously been proposed to be the sister group of all other Trichoptera or more advanced within the order, with equivocal monophyly and with different interordinal placements among various studies. In order to resolve the evolutionary history of the caddisflies as well as timing their diversification, we utilized fragments of three nuclear (carbamoylphosphate synthethase, isocitrate dehydrogenase and RNA polymerase II) and one mitochondrial (cytochrome oxidase I) protein coding genes, with 16 fossil trichopteran taxa used for time calibration. The ‘spicipalpian’ families are recovered as ancestral to all other caddisflies, though paraphyletic. We recover stable relationships among most families and superfamilies, resolving many previously unrecognized phylogenetic affinities amongst extant families. The origin of Trichoptera is estimated to be around 234 Ma, i.e. Middle – Late Triassic.  相似文献   

10.
Justine J.-L., Lambert A. and Mattei X. 1985. Spermatozoon ultrastructure and phylogenetic relationships in the monogeneans (Platyhelminthes). International Journal for Parasitology15: 601–608. New observations reported in this study together with bibliographical data allow comparisons of spermatozoon ultrastructure in 28 genera of monogeneans, belonging to 19 families. The authors propose to compare and classify monogenean spermatozoa using two simple ultrastructural characteristics: (a) the number of axonemes, 1 or 2, (b) the presence or absence of cortical microtubules. These traits make it possible to group monogenean spermatozoa in four patterns. Pattern 1 (2 axonemes plus microtubules) is characteristic of the polyopisthocotyleans (9 families). The three other patterns are found in the monopisthocotyleans. Pattern 2 (2 axonemes without microtubules) is found in the Capsalidae and Dionchidae, which seem closely related, and also in the Udonellidae, Gyrodactylidae and Euzetrema. Pattern 3 (1 axoneme plus 1 altered axoneme plus microtubules) is found in the Monocotylidae and Loimoidae. Pattern 4 (1 axoneme without microtubules) is found in the Amphibdellatidae, Ancyrocephalidae, Calceostomatidae and Diplectanidae. A phylogeny of the monogeneans is drawn from the data of comparative spermatology; this scheme coincides in many points with the phylogeny of Lambert (1980) which was based on the study of chaetotaxy and ciliated cells of the oncomiracidium.  相似文献   

11.
Trichoptera are holometabolous insects with aquatic larvae that, together with the Lepidoptera, make up the Amphiesmenoptera. Despite extensive previous morphological work, little phylogenetic agreement has been reached about the relationship among the three suborders--Annulipalpia, Spicipalpia, and Integripalpia--or about the monophyly of Spicipalpia. In an effort to resolve this conflict, we sequenced fragments of the large and small subunit nuclear ribosomal RNAs (1078 nt; D1, D3, V4-5), the nuclear elongation factor 1 alpha gene (EF-1 alpha; 1098 nt), and a fragment of mitochondrial cytochrome oxidase I (COI; 411 nt). Seventy adult and larval morphological characters were reanalyzed and added to molecular data in a combined analysis. We evaluated signal and homoplasy in each of the molecular datasets and attempted to rank the particular datasets according to how appropriate they were for inferring relationships among suborders. This evaluation included testing for conflict among datasets, comparing tree lengths among alternative hypotheses, measuring the left-skew of tree-length distributions from maximally divergent sets of taxa, evaluating the recovery of expected clades, visualizing whether or not substitutions were accumulating with time, and estimating nucleotide compositional bias. Although all these measures cast doubt on the reliability of the deep-level signal coming from the nucleotides of the COI and EF-1 alpha genes, these data could still be included in combined analyses without overturning the results from the most conservative marker, the rRNA. The different datasets were found to be evolving under extremely different rates. A site-specific likelihood method for dealing with combined data with nonoverlapping parameters was proposed, and a similar weighting scheme under parsimony was evaluated. Among our phylogenetic conclusions, we found Annulipalpia to be the most basal of the three suborders, with Spicipalpia and Integripalpia forming a clade. Monophyly of Annulipalpia and Integripalpia was confirmed, but the relationships among spicipalpians remain equivocal.  相似文献   

12.
Abstract The spermatozoa of some gall-midges (Cecidomyiidae, Lestremiinae), belonging to the tribe Micromyini, were seen to have an axoneme that consists of 10, instead of nine, microtubular doublets surrounding a central cylinder. In some related species within the same tribe the axoneme was found to contain a similar cylinder but to have nine doublets, as in typical flagella, or to have nine doublets and no central structure. These three types of axonemes can be given the shorthand designations “10+cyl”,“9+cyl”, and “9+0”. The tribe Lestremiini is characterized by a giant axoneme having 150 doublets in two rows reversely oriented. Other characteristics of examined spermatozoa are the electron density of the B-tubules of the axoneme, a feature shared by all members of the subfamily Lestremiinae, and the presence of a prominent cytoplasmic droplet containing numerous, regularly spaced microtubules, which is shared by all Micromyidi. These axonemal models are discussed from a phylogenetic point of view.  相似文献   

13.
Spermatozoa from a great number of insect species were fixed in a tannic acid-containing fixative and the ultrastructure of the flagellar axoneme was examined in a search for apomorphies. Most of the examined species, representing a majority of insect orders. have accessory tubules outside the axoneme (hence a 9 + 9 + 2 pattern), and these consist of 16 protofilaments. Some important apomorphies concern the number of protofilaments in the accessory tubules: 13 (plus 7 inner elements) in Ephemeroptera, 13 in the (elliptic) tubules of Psocoptera + Anoplura + Mallophaga (thus a synapomorphy), 13 in Tipulidae + Brachycera, 15 in the dipteran families Dixidae + Chironomidae (with a 9 + 9 + 2 axoneme) and Culicidae + Bibionidae (with a 9 + 9 + “1” axoneme), 17 in Phasmatodea, and 17–20 in Trichoptera. Other apomorphies concern the appearance of the so-called intertubular material outside the microtubular doublets, the appearance of the interior of the various microtubules, and the loss, in some taxa, of outer or inner dynein arms of both dynein arms. In some cases, the flagellum is completely abnormal; the sperm tail of Thysanoptera, for example, consists of 27 elements of 3 different kinds. The different taxa within orders Diptera and Trichoptera have sperm tail axonemes of different appearances, where those from other orders have a rather uniform appearance. The conclusions that can be drawn from this spermatological study, generally agree with data from classical studies, except with some variations, in some cases.  相似文献   

14.
The thread-like spermatozoon of the crab parasite Microphallus primas was studied by electron microscopy. A survey of the head region of the spermatozoon reveals three features hitherto unknown in Platyhelminthes spermatozoa. The first is the aberrant inclusion of the nucleus within one of the two axonemes, limited to the head end region. The second is the coexistence, in the same axoneme, of two patterns, 9 + 0 (doublets without dynein arms) and 9 + "1". The third is the presence of a layer of cortical microtubules running longitudinally from the zone where the nucleus goes from axoneme to the tail region (where the two flagella start). The sequence of events in spermatogenesis is similar to that described for most of the Digenea trematodes, and the spermiogenesis process conforms to a common plan in nearly the whole group.  相似文献   

15.
Mitochondrial genomes have been widely used for phylogenetic reconstruction and evolutionary analysis in various groups of Insecta. Gene rearrangements in the mitogenome can be informative characters for phylogenetic reconstruction and adaptive evolution. Trichoptera is one of the most important groups of aquatic insects. Prior to this study, complete mitogenomes from Trichoptera were restricted to eight families, resulting in a biased view of their mitogenome structure and evolution. Here, we assemble new mitogenomes for 66 species by high-throughput sequencing. The mitogenomes of 19 families and 47 genera are documented for the first time. Combined with 16 previously published mitogenomes of Trichoptera, we find 14 kinds of gene rearrangement patterns novel for Trichoptera, including rearrangement of protein-coding genes, tRNAs and control regions. Simultaneously, we provide evidence for the occurrence of tandem duplication and non-random loss events in the mitogenomes of three families. Phylogenetic analyses show that Hydroptilidae was recovered as a sister group to Annulipalpia. The increased nucleotide substitution rate and adaptive evolution may have affected the mitochondrial gene rearrangements in Trichoptera. Our study offers new insights into the mechanisms and patterns of mitogenome rearrangements in Insecta at large and into the usefulness of mitogenomic gene order as a phylogenetic marker within Trichoptera.  相似文献   

16.
Ninefold microtubule symmetry of the eukaryotic basal body and motile axoneme has been long established [1-3]. In Drosophila, these organelles contain distinct but similar beta-tubulin isoforms [4-10]: basal bodies contain only beta1-tubulin, and only beta2-tubulin is used for assembly of sperm axonemes. A single alpha-tubulin functions throughout spermatogenesis [11,12]. Thus, differences in organelle assembly reside in beta-tubulin. We tested the ability of beta1 to function in axonemes and found that beta1 alone could not generate axonemes. Small sequence differences between the two isoforms therefore mediate large differences in assembly capacity, even though these two related organelles have a common evolutionarily ancient architecture. In males with equal beta1 and beta2, beta1 was co-incorporated at equimolar ratio into functional sperm axonemes. When beta1 exceeded beta2, however, axonemes with 10 doublets were produced, an alteration unprecedented in natural phylogeny. Addition of the tenth doublet occurred by a novel mechanism, bypassing the basal body. It has been assumed that the instructions for axoneme morphogenesis reside primarily in the basal body, which normally serves as the axonemal template. Our data reveal that beta-tubulin requirements for basal bodies and axonemes are distinct, and that key information for axoneme architecture resides in the axonemal beta-tubulin.  相似文献   

17.
Abstract Spermiogenesis was studied by transmission electron microscopy in the acanthocotylid monogeneans Myxinidocotyle californica (from Eptatretus stoutii) and Acanthocotyle lobianchi (from Raja clavata). In Myxinidocotyle and Acanthocotyle, the zone of differentiation shows two 9+‘1’ axonemes, the elongating nucleus and mitochondrion, and a single cortical cytoplasmic microtubule. This single microtubule is found in the mature spermatozoon of both species and was also noted in capsalids. This requires a modified definition of ‘pattern 2’ of spermatozoa which becomes: ‘spermatozoa with two axonemes and no cortical microtubules, except one single element much shorter than the spermatozoon’. A very unusual structure was found in Myxinidocotyle, but not in Acanthocotyle: the centriolar derivative of one of the 9+‘1’ axonemes is made up of 18 diverging singlets of unequal length associated with electron-dense cytoplasm. This seems to be the first case of a centriolar derivative without nine-fold symmetry associated with an axoneme with nine-fold symmetry.  相似文献   

18.
Spermal ultrastructure in 16 caddisflies (Trichoptera) belonging to the suborder Integripalpia, superfamily Limnephiloidea, was examined in a search for apomorphic and plesiomorphic features. In all species examined, the sperm tail axoneme was of the 9 + 9 + 2 + type, the axonemal doublets lacked outer dynein arms but had inner ones, and the cell membrane was scalloped with a prominent glycocalyx. The number of protofilaments in the accessory tubules depended on the phylogenetic position: 18 in the family Leptoceridae, 19 in Limnephilidae, Goeridae and Odontoceridae (with a reduction in the number distally), and 20 in Sericostomatidae. Spermatozoa in Leptoccridae are further characterized by the 2 central microtubules being flattened and eccentric and not being surrounded by a central sheath. Spermatozoa of Sericostomatidae have an accessory body and a helicoidal array of the sperm tail.  相似文献   

19.
This study describes the spermatozoa of the dendrobatids Epipedobates femoralis and Colostethus sp. using light and transmission electron microscopy. Both species possess a biflagellate spermatozoon, an unusual characteristic only previously reported in two anuran species belonging to the families Leptodactylidae and Racophoridae. The acrosomal complex of both species consists of a conical acrosomal vesicle and a subacrosomal cone, both of which cover the anterior portion of the nucleus, but to differing extents. In the midpiece, the centrioles are disposed parallel to each other and to the cell axis and give rise to two axonemes. Two paraxonemal rods were also seen entering the nuclear fossa. Both flagella are surrounded by a single mitochondrial collar. Each flagellum is formed by an axial fiber connected to the axoneme by an axial sheath; juxta-axonemal fibers are absent. Our data seem to support that Epipedobates femoralis should be placed in a separate clade possibly related to Colosthetus and that these two genera may not be monophyletic.  相似文献   

20.
The spermatozoon of the monopisthocotylean monogenean Pseudodactylogyrus sp. (a gill parasite of eels) has a single axoneme showing a 9+‘1’ pattern, a nucleus and a mitochondrion, but has no cortical microtubules. This species thus provides a very simple model for the study of tubulin in the 9+‘1’ axonemes of the Platyhelminthes, in contrast with digenean sperm which have a more complex spermatozoon with two such axonemes and cortical microtubules. Indirect immunofluorescence labelling of tubulin shows that the elongating spermatids, initially lying in all directions in the early stages, are arranged as parallel elements in further stages. The number of spermatids in an isogenic group could also be precisely counted and equals 32. Nuclear labelling with fluorescent dyes shows that the nuclei, first located in the common mass of the spermatids, later elongate and migrate into the growing spermatids, and that the nucleus is located in the central part of the mature spermatozoon, with the two extremities devoid of nucleus. Labelling with antibodies directed against acetylated, tyrosinated, and polyglutamylated tubulin gave positive results, thus indicating that these post-translational modifications of tubulin are present in the axoneme of spermatids and spermatozoa of monopisthocotylean monogeneans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号