首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small subunit ribosomal DNA (ssu rDNA) of 13 isopods was sequenced. The entire length of the ribosomal gene is unusually long, resulting from the presence of five expansion elements accounting for more than 40% of the gene. We found that in terrestrial isopods the length of the ssu rDNA ranges from 2414 bp (Ligidium hypnorum) to 3537 bp (Cubaris murina). This is the longest metazoan ssu rDNA reported to date. The conserved regions are highly informative for analysis of the early nodes of the tree, whereas the variable expansion elements are better suited to reconstruction of the branching pattern between closely related taxa. The suggested relationship among Synochaeta, Crinochaeta, and Diplochaeta based on the conserved regions confirms that based on previous morphological analyses. In contrast, the phylogeny within the Crinochaeta based on the entire ssu rDNA including the variable domains is in conflict with that based on most of the morphological analyses. The phylogenetic analyses of the ssu rDNA support a repeated independent evolution of the three different types of pleopodal lungs in the Crinochaeta.  相似文献   

2.
Isopods shed first the posterior and then the anterior half of the body. Before molt, most terrestrial species resorb CaCO3 from the posterior mineralized cuticle. The mineral is stored in anterior sternal deposits, which are used to calcify the new posterior cuticle after molt. For Porcellio scaber it is known that the anterior sternal epithelium has specific structural differentiations for epithelial transport. These differentiations include the plasma membrane surface areas, and the volume fraction of the mitochondria. We analyzed the ultrastructure of the sternal epithelium and used a morphometric approach to study the variations of these parameters between species living in different terrestrial environments. In Ligidium hypnorum, which lives in moist environments, the plasma membrane surface area and volume fraction of mitochondria are much larger than in the semiterrestrial Ligia oceanica. This is in accordance with the relatively larger CaCO3 deposits and shorter time intervals for their formation and resorption in L. hypnorum. For P. scaber, which is adapted to mesic habitats, most values are between those of L. oceanica and L. hypnorum. However, P. scaber has even larger CaCO3 deposits which are formed and degraded within similar time intervals as in L. hypnorum. This unexpected result is considered from the standpoint of more effective mechanisms being present for epithelial ion transport.  相似文献   

3.
The ultrastructure of the calcareous red coralline alga Lithothrix aspergillum Gray and the development of the various tissue types has been studied. The sub-apical meristematic tissue alternately produces genicular or intergenicular cells. The genicular cells rapidly elongate and their cell walls thicken and become denser as more fibrillar wall material is laid down within the cell wall. These cells contain little cytoplasm and few organelles. The inter genicular cells which elongate only slightly during development have a small vacuole and many free starch grains in the cytoplasm. The peripheral cells in each inter genicular layer remain meristematic and form a cortical cell layer over the genicular cells. These cortical cells and the apical meristematic cells are covered by small epidermal cells which have extensive cell wall ingrowths between the chloroplasts. The inter genicular cells are calcified. Although the CaCO3 is laid down within the cell walls, there is always a thin layer of CaCO3-free organic cell wall material between the plasmalemma and the CaCO3 impregnated wall. Only the distal tips of the genicular cells are calcified. In old genicular tissues of Lithothrix, secondary deposits of CaCO3 of unknown crystallography are also found in the spaces between the cell walls. Thus there appear to be at least two mechanisms of calcification in this alga.  相似文献   

4.
Birds’ eggshells are primarily composed of calcite, an abundant polymorph of calcium carbonate (CaCO3). However, the eggshells of some species are coated with spherules of vaterite, a rare and thermodynamically unstable polymorph of CaCO3, the function of which remains unknown. We experimentally tested the mechanical and physiological effects of the vaterite coating on eggshells of the Greater Ani Crotophaga major, a tropical cuckoo. Vaterite removal did not affect vapour conductance rates across the eggshell, indicating that the vaterite coating does not influence gas exchange during embryonic development. However, nanoindentation revealed that the hardness and elasticity of vaterite is similar to that of calcite, and white light interferometry showed that the vaterite layer increased the total thickness of the shell cuticle by up to 10%. Furthermore, calculations of contact mechanics found that when two eggs come into contact, the depth of the surface deformation caused by the contact is far less than the thickness of the vaterite coating. These results suggest that the layer of vaterite spherules may act as a shock absorber for the underlying calcite shell, protecting it from mechanical damage caused by collision with other eggs in the nest and reducing the risk of eggshell fracture during incubation.  相似文献   

5.
The ultrastructure of the haloalkaliphilic endoevaporite cyanobacterium ‘Euhalothece natronophila’ Z-M001 from the soda Lake Magadi was investigated during the initial stages of fossilization in a model experimental system. The cyanobacterium was cultivated in concentrated carbonate solution supplemented with calcium chloride. It was revealed that the amorphous CaCO3 formed under these conditions could interact with the cell wall during the first stages of ‘E. natronophila’ calcification. Evidence is presented that the surface layer of the ‘E. natronophila’ envelope, presumably containing polysaccharide and/or (glyco)protein components, can be involved in the adsorption and subsequent crystallization of CaCO3 with the formation of a massive “shell” embedding the morphologically intact cells. It was established that the ultrastructure of the cell wall and the intrathylakoid space changed during CaCO3 mineralization. During the later fossilization stages, cells covered by the calcium-containing “shell” were apparently mummified, and mostly retained their original shape. The encapsulation of cyanobacteria in the trona globule was characterized by a different pattern. It probably involved tight binding of the growing crystal to the glycocalyx components that are anchored in the outer membrane. This may result in its detachment from the underlying peptidoglycan layer. The peptidoglycan was retained, and the protoplasts were ultrastructurally similar to the intact ones. Cyanobacteria incorporated in large trona crystals underwent degradation, deformation, and destruction. This accounts for the fact that massive trona deposits of Lake Magadi lack cyanobacterial fossils that are abundant in calcium-containing strata.  相似文献   

6.
Formation of a circular hole 8–10 mm in diameter in the calcified layers of the carapace from crabs in stage C4 of the molt cycle stimulates the tissue under and adjacent to the injury to deposit a unique calcified cuticular material below the intact membranous layer. Deposition was followed for 69 days using light microscopic histology, histochemistry, and scanning electron microscopy. Quantitative analyses of CaCO3 were conducted using atomic absorption spectrophotometry and Gran titration. Spatial distribution of CaCO3 was determined with X-radiography. A scab is formed by day two under the injury. At four days the epithelium changes from squamous to columnar and deposits a PAS-positive layer with an irregular lamellar fine structure, followed by highly organized lamellae structurally similar to normal exocuticle. Histochemically, however, these lamellae resemble normal endocuticle. CaCO3 is evident external to the outermost lamellae by day eleven as a fused mass of aragonite granules. The lamellar region calcifies proximally from the outer surface and is amorphous CaCO3. Repair cuticle is approximately 20%CaCO3 by weight.  相似文献   

7.
An experimental study is described of the formation of extracellular deposits on the surfaces of cells in freeze-fractured, frozen-hydrated primary leaves of Phaseolus vulgaris examined by low-temperature scanning electron microscopy. The deposits, observed under a range of experimental conditions, consisted of (a) droplets with diameters of 1.5 to 3.0 m, (b) droplets with diameters of 10 to 30 m, (c) crystals with diameters of 1.0 to 6.0 m, and (d) granules with diameters up to 0.15 m. The types of deposit were influenced by specimen cooling rate, and their distribution was influenced by the direction of the thermal gradient during cooling. All deposits were predominantly water ice. The quantities of deposited water (up to 4.0% of the leaf water content) increased as the cooling rate was reduced. It is concluded that the ice deposits were primarily artefacts of cryofixation and do not represent the location of water in vivo, as recently suggested. We propose that the deposits arose in four main ways: (1) displacement of water from underlying cells by a pressure wave resulting from the volume increase of intracellular water as it freezes, (2) evaporation of water from warmer cells and its condensation onto colder cells, (3) withdrawal of water from underlying cells by extracellular ice crystallization, (4) condensation of pre-existing water vapour in the intercellular spaces onto cells. The significance of the findings is discussed in relation to the use of lowtemperature scanning electron microscopy in studies of plant morphology and for localizing water and soluble ions within plant cells and tissues.Abbreviation LTSEM low-temperature scanning electron microscopy  相似文献   

8.
The ultrastructural aspects ofCyperus iria leaves showing the C4 syndrome and the typical C3 species,Carex siderosticta, in the Cyperaceae family were examined.C. iria exhibited the chlorocyperoid type, showing an unusual Kranz structure with vascular bundles completely surrounded by two bundle sheaths. The cellular components of the inner Kranz bundle sheath cells were similar to those found in the NADP-ME C4 subtype, having centrifugally arranged chloroplasts with greatly reduced grana and numerous starch grains. Their chloroplasts contained convoluted thyla-koids and a weakly-developed peripheral reticulum, although it was extensive mostly in mesophyll cell chloroplasts. The outer mestome bundle sheath layer was sclerenchymatous and generally devoid of organelles, but had unevenly thickened walls. Suberized lamellae were present on its cell walls, and they became polylamellate when traversed by plasmodesmata. Mesophyll cell chloroplasts showed well-stacked grana with small starch grains. InC. siderosticta, vascular bundles were surrounded by the inner mestome sheath and the outer parenchymatous bundle sheath with intercellular spaces. The mestome sheath cells degraded in their early development and remained in a collapsed state, although the suberized lamellae retained polylamellate features. Plastids with a crystalline structure, sometimes membrane-bounded, were found in the epidermal cells. The close interveinal distance was 35–50 μm inC. iria, whereas it was 157–218 μm inC. siderosticta. These ultrastructural characteristics were discussed in relation to their photosynthetic functions.  相似文献   

9.
Parameters of acid-base and energy status were studied by in vivo 31P-nuclear magnetic resonance spectroscopy in three White Sea Littorina spp. (L.littorea, L. saxatilis and L. obtusata) during prolonged anaerobiosis in freshwater. Intracellular pH decreased significantly, especially during the early period of anaerobiosis, but later the decrease in intracellular pH slowed down considerably, suggesting a capacity for intracellular pH regulation in all three species. There was a trend for intracellular pH to fall most rapidly in the least freshwater-resistant species, L. obtusata, as compared to the most resistant, L. littorea. Non-bicarbonate, non-phosphate buffer values estimated by the homogenate technique were similar in the three studied species (28–37 mmol pH−1 kg−1 wet weight) and did not change during freshwater exposure. The CaCO3 buffer value of the foot tissues was considerably higher (171–218 mmol pH−1 kg−1 wet weight) and decreased significantly during freshwater exposure. The contribution of the multiple tissue buffering systems to intracellular pH regulation in Littorina spp. shifts between different stages of freshwater exposure. Initially, the non-bicarbonate, non-phosphate tissue buffering system seems to be of major importance for metabolic proton buffering at intracellular pH between 7.5 and 7.0. During later stages of anaerobiosis and at lower intracellular pH, the CaCO3 buffer is involved in proton buffering. Decrease in the CaCO3 buffer value during freshwater exposure was in quantitative agreement with the amount of metabolic protons buffered, thus suggesting that CaCO3 tissue stores may serve as a major buffering system during prolonged anaerobiosis in Littorina spp. Accepted: 23 December 1999  相似文献   

10.
In the Eastern Alps, both fossil spring limestones and actively limestone-depositing springs are common. The geological context and a few radiometric age data of fossil spring-associated limestones (SAL) mentioned herein indicate that they accumulated subsequent to the Last Glacial Maximum in the Eastern Alps (24–21 ka BP). Prevalent facies of the SAL deposits, active and fossil, including phytoclastic tufa, microbialites s.l., springstone, and moss tufa form, or formed, from (a) waterfall/creek systems, (b) hillslope-paludal systems, (c) moss-tufa systems, and from (c) foreland-type systems. Precipitated minerals include calcite and, at springs of elevated Mg/Ca ratio, magnesian calcite and aragonite. In a few limestone-depositing, oxygen-deficient springs with dissolved Fe2+, downstream, iron oxide precipitates ahead of CaCO3 (mineralogical zonation). Biota associated with calcium-carbonate deposition include cyanobacteria, green micro-algae, macro-algae, and mosses. Calcium-carbonate precipitation may be speeded by biological mediation, but mineralogy and polymorphy of precipitated CaCO3 are not biotically controlled. In the Eastern Alps, SAL deposits in total range from 190 to 2,520 m a.s.l., corresponding to mean annual temperatures of 10°C to less than 0°C. In altitudes below the continuous permafrost line (about 2,600–3,000 m a.s.l., depending on location), SAL deposition is chiefly controlled by proper balance between water supply and sufficient supersaturation for CaCO3, rather than by mean annual temperature.  相似文献   

11.
Fish in the embryo-larval stage of development have been shown to be sensitive to boron (B) at both ends of the dose-response curve (1,2). The present study evaluated the health effects of low and high B concentrations on rainbow trout (Oncorhynchus mykiss), a cold water species, and zebrafish (Danio rerio), a warm water species. Rainbow trout embryos were incubated from day 1 until 2 wk posthatch in Type 1 ASTM ultrapure-grade water (12.5°C) supplemented with only B (0-500 μM) as boric acid, or together with CaCO3 (0–2 mM) to increase water hardness. Embryonic growth was stimulated by B in a dose-dependent manner at all Ca concentrations (p < 0.001). Chronic exposures below 9 μmol B/L impaired embryonic growth and above 10 mmol B/L caused death (p < 0.001). Thus, the safe range of exposure for the rainbow trout was between the adverse effect concentrations of 9 μmol B/L and 10 mmol B/L. Zebrafish were maintained for 6 mo in ultrapure water containing <0.2 μmol B/L to determine the effect of low-level exposure. High-level exposure was assessed by exposing zygotes, derived from parents maintained at 46 μmol B/L, to graded concentrations of boric acid up to a concentration of 75 mmol B/L from fertilization until they were free feeding (96 h). Fertilization occurred, but zygotes failed to survive when water contained <0.2 umol B/L (p < 0.001). Death occurred at and above 9.2 mmol B/L. Thus, the safe range of B exposure for zebrafish was between the adverse effect concentrations of 0.2 μmol B/L and 9.2 mmol B/L. The dose-response for both species was thus U-shaped. Part of this work was previously published in abstract form and presented at Experimental Biology 97, April 6–9, New Orleans, LA (Eckhert, C. [1997] Embryonic trout growth and boron exposure,FASEB J. 11, A406 [abstract]).  相似文献   

12.
A soil incubation and short-term root growth experiment was conducted to investigate the effects of organic matter application on Al toxicity alleviation in a highly weathered acid soil. Ground leaves of a tree legume (Calliandra calothyrsus Meissn.), ground barley (Hordeum vulgare L.) straw, or CaCO3 were mixed at various rates with A-horizon soil of a red podzolic soil (Epiaquic Haplustult) and incubated at 90% of field capacity for 4 or 10 weeks. After the incubation, a short term (48 h) root growth test was conducted using mung bean (Vigna radiata (L.) Wilczek), followed by the analysis of the solution and solid phases of the post-harvest soil. Adding either CaCO3 or organic matter increased root length in mung bean largely by decreasing the activity of monomeric Al in the soil solution. With organic matter, the major mechanisms of this decrease were presumed to be precipitation of soluble Al and the formation of Al-organic matter complexes. The former effect was predicted from the pH increase accompanying the organic matter addition, the increase being larger with legume leaves which had the higher exchangeable and soluble Ca and Mg contents. The concentration of Al complexed with soluble organic matter also was shown to increase with increasing rate of organic matter addition, the effect again being larger with legume leaves. The sum of monomeric Al species activity and Al3+ activity was negatively correlated with relative root length for the organic matter and CaCO3 treatments. However, indices which took into account the possible alleviation effects of basic cations in soil solution on Al toxicity provided an improvement in correlation with relative root length. The efficiency of the two organic amendments relative to CaCO3 in decreasing Al toxicity was assessed by comparing the rates required to reduce Al3+ activity below 10 μ M, the value found to be associated with 90% relative root length for mung bean. The rates of CaCO3, legume leaf and barley straw required to reach this critical value were 0.75, 14, and 42 t ha−1 respectively.  相似文献   

13.
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 μg ml−1 to 3.81 μg ml−1 while the LC50 was 266.68 μg ml−1 for B. amphitrite cyprids; EC50 ranged from 0.67 μg ml−1 to 0.78 μg ml−1, and LC50 was 2.64 μg ml−1 for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 μg per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.  相似文献   

14.
Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.  相似文献   

15.
A transect of ten profiles was laid out in 20 m intervals on a tidal sand flat approximately 100 m from the east shore of Sylt until the next tideway was reached. Sediment samples were taken from 0–2 cm depth (oxic layer) and 2–4 cm depth (anoxic layer). The average content of organic carbon (C) was 2.41 mg g−1 in the oxic layer and 1.86 mg g−1 in the anoxic layer. The organic C content correlated positively with non-biomass C, 0.5M K2SO4 extractable C, total nitrogen (N), cation exchange capacity (CEC), and the textural classes <200 μm, and negatively correlated with the coarse sand fraction. The average total C:N ratio was 7.0 in the oxic layer and 6.7 in the anoxic layer, indicating that the C input comes entirely from the microflora. CHCl3-labile C was measured by the fumigation-extraction method and was converted to microbial biomass C (values in brackets). The average content of CHCl3-labile C was 407 μg g−1 (903 μg g−1) in the oxic layer and 214 μg g−1 (476 μg g−1) in the anoxic layer. CHCl3-labile C did not correlate with CEC and the textural classes <200 μm, indicating that conditions other than the physical environment determine this fraction (C input, grazing).  相似文献   

16.
Voriconazole (Vfend™) is a new triazole that currently is undergoing phase III clinical trials. This review summarizes the published data obtained by NCCLS methods on the in vitro antifungal activity of voriconazole in comparison to itraconazole, amphotericin B, fluconazole, ketoconazole and flucytosine. Voriconazole had fungistatic activity against most yeasts and yeastlike species (minimum inhibitory concentrations [MICs] <2 μg/ml) that was similar or superior to those of fluconazole, amphotericin B, and itraconazole. Against Candida glabrata and C. krusei, voriconazole MIC ranges were 0.03 to 8 and 0.01 to >4 μg/ml, respectively. For four of the six Aspergillus spp. evaluated, voriconazole MICs (< 0.03 to 2 μg/ml) were lower than amphotericin B (0.25 to 4 μg/ml) and similar to itraconazole MICs. Voriconazole fungistatic activity against Fusarium spp. has been variable. Against F. oxysporum and solani, most studies showed MICs ranging from 0.25 to 8 μg/ml. Voriconazole had excellent fungistatic activity against five of the six species of dimorphic fungi evaluated (MIC90s < 1.0 μg/ml). The exception was Sporothrix schenckii (MIC90s and geometric mean MICs ≥ 8 μg/ml). Only amphotericin B had good fungistatic activity against the Zygomycetes species (voriconazole MICs ranged from 2 to >32 μg/ml). Voriconazole showed excellent in vitro activity (MICs < 0.03 to 1.0 μg/ml) against most of the 50 species of dematiaceous fungi tested, but the activity of all the agents was poor against most isolates of Scedosporium prolificans and Phaeoacremonium parasiticum (Phialophora parasitica). Voriconazole had fungicidal activity against most Aspergillus spp., B. dermatitidis, and some dematiaceous fungi. In vitro/in vivo correlations should aid in the interpretation of these results. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves.  相似文献   

18.
Diaphanosoma brachyurum (Cladocera: Sididae) is a common limnetic species in summer-temperate and tropical water bodies. Few studies have investigated the sensitivity of D. brachyurum to toxic chemicals despite this species often being dominant in natural lakes and ponds. We performed acute toxicity tests of three heavy metals, copper (Cu), zinc (Zn), and cadmium (Cd), to D. brachyurum. For D. brachyurum, the lethal concentration (LC)50 values of Cu (24-h LC50 = 16.4 μg/L, 48-h LC50 = 10.4 μg/L) and Zn (24-h LC50 = 253.4 μg/L, 48-h LC50 = 174.1 μg/L) were lower than those for D. magna, one of the most used test organisms for toxic chemicals. On the other hand, for D. brachyurum the 24-h LC50 of Cd (166.4 μg/L) was much greater than that for D. magna, and the 48-h LC50 of Cd (69.8 μg/L) was comparable. Our results indicate that D. brachyurum may be more strongly influenced by Zn and Cu than is D. magna. It is likely that the summer plankton community in which Diaphanosoma species is dominant is more sensitive to heavy metals than a community in which Daphnia species are dominant.  相似文献   

19.
An experimental set-up which enabled non-invasive, real-time reactive oxygen species (ROS) visualization on a whole plant level was constructed. In the test organism, Lemna minor L. (common duckweed), apoplastic and symplastic oxidative stress was evaluated by exposure to menadione (50 μM), menadione (50 μM) + ascorbate (100 μM) or neither for control. Menadione (50 μM) caused a statistically significant increase in H2DCFDA fluorescence in the apoplast after 60 minutes of exposure. The addition of ascorbate (100 μM) in the test medium significantly decreased apoplastic oxidative stress. 50 μM menadione caused an increase in symplastic H2DCFDA fluorescence in 57% of fronds. The exposure of L. minor plants to both menadione and ascorbate decreased the rate of fluorescence intensity accumulation in the symplast to control levels. The method has proven to be quick and straightforward and could be applied to a range of chemicals in various physiological and toxicological plant studies. The advantages of the set-up and different possible artefacts are discussed.  相似文献   

20.
Two nanoplanktonic marine coccolithophores, Emiliania huxleyi and Gephyrocapsa oceanica, were grown at 23°C with a 16-hour light and 8-hour darkness regimen. The cells were dried at room temperature and then subjected to pyrolysis at 100° to 500°C under anoxygenic conditions to produce hydrocarbons. Temperature-dependent profiles of the liquid-saturated hydrocarbons (saturates) produced during pyrolysis were very similar for the two strains, although the total amount was higher in E. huxleyi than in G. oceanica. The amount of saturates produced was only 0.05% to 0.15% below 200°C, but about 2.1% to 2.8% at 300°C. Their major components were normal alkanes in a series ranging from nC11 to nC35 with the predominant peak at nC15. At 400° and 500°C most of saturates transformed into gaseous compounds. The major saturates identified in all pyrolysates were normal C31 monounsaturated and diunsaturated alkenes, a series of normal alkanes, phytenes, C28 sterenes, and steranes. Profiles of saturates in gas chromatography–mass spectroscopy varied with increasing pyrolysis temperature and also differed between E. huxleyi and G. oceanica. The two coccolithophores are useful candidates for the production of renewable liquid fuel through pyrolysis—especially E. huxleyi, which has higher production. The results also provide information for further studies on the characterization, source, and paleogeographic distribution of marine sediment. Received October 28, 1998; accepted February 15, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号