首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Lens fibers are coupled by communicating junctions which contain a 28-kDalton protein (MIP26) believed to be the main component of the cell-to-cell channel. To study the permeability properties and regulation of these channels, anin vitro system has been developed in which MIP26 isolated from calf lens is incorporated into liposomes and the resulting channels are studied spectrophotometrically by a swelling assay. Liposome vesicles were prepared using a sonication/resuspension method. Incorporation efficiency was monitored by freeze-fracture. Vesicles were resuspended in 6% Dextran T-10. Assay buffer was identical, except for isotonic substitution of sucrose for T-10. MIP26-incorporated (but not control) vesicles swell under isotonic conditions indicating sucrose entry (via channels) followed by water to maintain osmotic balance. In the absence of calmodulin, calcium ion has no effect on channel permeability. On the contrary, vesicles prepared with equimolar amounts of MIP26 and CaM do not swell in the presence of calcium ion, indicating that the channels can be closed. Addition of EGTA to these vesicles reinitiates swelling—evidence that the channel gating mechanism is reversible. Magnesium ion has no effect on either type of vesicle.  相似文献   

2.
Summary This paper reports the inhibitory effects of calmidazolium (CDZ), a calmodulin inhibitor, on electrical uncoupling by CO2. Membrane potential and coupling ratio (V 2/V1) are measured in two neighboring cells ofXenopus embryos (16 to 64 cell stage) for periods as long as 5.5 hr. Upon exposure to 100% CO2, control cells consistently uncouple even if the CO2 treatments are repeated every 15 min for 2.5 hr. CDZ (5×10–8–1×10–7 m) strongly inhibits uncoupling. The inhibition starts after 30, 50 and 60 min of treatment with 1×10–7, 7×10–8 and 5×10–8 m CDZ, respectively, is concentration-dependent and partially reversible. In the absence of CO2, CDZ also improves electrical coupling. CDZ has no significant effect on membrane potential and nonjunctional membrane resistance. These data suggest that calmodulin or a calmodulin-like protein participates in the uncoupling mechanism.  相似文献   

3.
Ca2+ dependence of tight junction structure has been well documented in cultured epithelial tissues, and regulatory mechanisms have been identified. To analyse the possible control exerted on inter-Sertoli junctions, we exposed guinea-pig seminiferous tubules to the presence of a Ca2+ chelator (EGTA) and to a calmodulin blocker (Trifluoperazine, TFP) in vitro, for times ranging from 30 to 120 min. We observed the morphology of junctional complexes and the basal cytoplasmic regions in sections and replicas. Sertoli cell response to Ca2+ depletion involved several events: retraction of cells toward the base of the tubule and a consequent stretching of the points of fusion, augmented density of the cytoplasm, and destabilization of the array of intramembrane particles. Exposure of tubules to TFP resulted in disruption of the interactions between actin filaments and membrane junctional specialization, as well as a disorganization of other cytoskeletal elements. Thus, in vitro, junction integrity appears to be related to Ca2+ level, and Ca2+ depletion apparently interferes with Ca2+ distribution inside the cell and on microfilaments involved in junction regulation. Our results do not provide direct evidence for any particular mechanism of action of TFP, but a multiple effect is evident. TFP, which affects Ca2+ regulation and membrane fluidity, probably acts indirectly on junction-associated filaments. Both the experimental conditions tested suggest a Ca2+-mediated regulatory role of microfilaments of this complex junction.  相似文献   

4.
Summary Lens fibers are coupled by communicating junctions, clusters of cell-to-cell channels composed of a 28-kD intrinsic membrane protein (MIP26). Evidence suggests that these and other cell-to-cell channels may close as a result of protein conformational change induced by activated calmodulin. To test the validity of this hypothesis, we have measured the intrinsic fluorescence emission and far-ultraviolet circular dichroism of the isolated components MIP26, calmodulin, and the MIP26-calmodulin complex, both in the absence and presence of Ca++, an uncoupling agent. MIP26 shows no change in either, fluorescence emission (primarily tryptophan and a measure of aromatic constitutivity) or in its circular dichroism spectrum. Calmodulin exhibits a 32% increase in fluorescence emission intensity with constant emission wavelength, entirely tyrosine, and a 44% increase in -helicity, changes previously described. The MIP26-calmodulin complex, on the other hand, displays fluorescence emission and circular dichroism spectra which are slightly different from the sum of the two single components, but shows marked differences in both spectra upon Ca++ addition. This indicates a change in conformation in one or both of the two components. Spectral changes include a 5-nm blue-shift, a 50% increase in tyrosine fluorescene emission, a 25% decrease in tryptophan fluorescence emission, and a 5% increase in the -helicity of the complex. These changes also occur about an isosbestic point and are fully reversible. These data provide additional evidence that activated calmodulin may modulate gating of cell-to-cell channels by affecting channel protein.  相似文献   

5.
A mutation (Cam7) to the single endogenous calmodulin gene of Drosophila generates a mutant protein with valine 91 changed to glycine (V91G D-CaM). This mutation produces a unique pupal lethal phenotype distinct from that of a null mutation. Genetic studies indicate that the phenotype reflects deregulation of calcium fluxes within the larval muscles, leading to hypercontraction followed by muscle failure. We investigated the biochemical properties of V91G D-CaM. The effects of the mutation on free CaM are minor: Calcium binding, and overall secondary and tertiary structure are indistinguishable from those of wild type. A slight destabilization of the C-terminal domain is detectable in the calcium-free (apo-) form, and the calcium-bound (holo-) form has a somewhat lower surface hydrophobicity. These findings reinforce the indications from the in vivo work that interaction with a specific CaM target(s) underlies the mutant defects. In particular, defective regulation of ryanodine receptor (RyR) channels was indicated by genetic interaction analysis. Studies described here establish that the putative CaM binding region of the Drosophila RyR (D-RyR) binds wild-type D-CaM comparably to the equivalent CaM-RyR interactions seen for the mammalian skeletal muscle RyR channel isoform (RYR1). The V91G mutation weakens the interaction of both apo- and holo-D-CaM with this binding region, and decreases the enhancement of the calcium-binding affinity of CaM that is detectable in the presence of the RyR target peptide. The predicted functional consequences of these changes are consonant with the in vivo phenotype, and indicate that D-RyR is one, if not the major, target affected by the V91G mutation in CaM.  相似文献   

6.
Calcium ions play an important role in the regulation of stomatal movement and the mechanism underlying this action is yet to be determined. It is suggested that guard cell plasma membrane ATPase is a target for calcium action and that this effect is mediated by calmodulin. In this study, the effects of calcium and two calmodulin antagonists on ATPase activity in a crude homogenate of Commelina communis L. guard cell protoplasts were examined. The homogenate contained Mg2+-dependent, K+-simulated ATPase activity, which was inhibited by CaCl2 while stimulated by the calmodulin antagonists, compound 48/80 and chlorpromazine. The calmodulin antagonists partially reversed the inhibitory effect of calcium ions. The results support the possibility of calmodulin involvement in the regulation of guard cell ATPase activity by calcium ions.  相似文献   

7.
Soybean calmodulin isoform 4 (sCaM4) is a plant calcium‐binding protein, regulating cellular responses to the second messenger Ca2+. We have found that the metal ion free (apo‐) form of sCaM4 possesses a half unfolded structure, with the N‐terminal domain unfolded and the C‐terminal domain folded. This result was unexpected as the apo‐forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg2+ ions are always present at high concentrations in cells (0.5–2 mM), we suggest that Mg2+ should be bound to sCaM4 in nonactivated cells. CD studies revealed that in the presence of Mg2+ the initially unfolded N‐terminal domain of sCaM4 folds into an α‐helix‐rich structure, similar to the Ca2+ form. We have used the NMR backbone residual dipolar coupling restraints 1DNH, 1DCαHα, and 1DC′Cα to determine the solution structure of the N‐terminal domain of Mg2+‐sCaM4 (Mg2+‐sCaM4‐NT). Compared with the known structure of Ca2+‐sCaM4, the structure of the Mg2+‐sCaM4‐NT does not fully open the hydrophobic pocket, which was further confirmed by the use of the fluorescent probe ANS. Tryptophan fluorescence experiments were used to study the interactions between Mg2+‐sCaM4 and CaM‐binding peptides derived from smooth muscle myosin light chain kinase and plant glutamate decarboxylase. These results suggest that Mg2+‐sCaM4 does not bind to Ca2+‐CaM target peptides and therefore is functionally similar to apo‐mCaM. The Mg2+‐ and apo‐structures of the sCaM4‐NT provide unique insights into the structure and function of some plant calmodulins in resting cells.  相似文献   

8.
Calmodulin was purified from human tonsillar lymphocytes utilizing calcium-dependent binding of calmodulin to fluphenazine-Sepharose. The molecular weight and phosphodiesterase activation of the lymphocyte calmodulin were very similar to those of purified bovine brain calmodulin. Trifluoperazine (TFP), a calmodulin inhibitor, suppressed lymphocyte stimulation as assessed by 3H-thymidine incorporation into DNA of lectin-stimulated lymphocytes. TFP had no effect on the early 45Ca2+ uptake induced by mitogenic lectins, although this latter was inhibited by verapamil which also suppressed the 3H-thymidine incorporation. The results are in keeping with the interpretation that the inhibition of T cell stimulation by TFP was not due to suppression of Ca2+ uptake, but due to inactivation of Ca(2+)-calmodulin complex which might be formed subsequent to Ca2+ entry into the cell.  相似文献   

9.
The sizes of organelles are tightly regulated in the cells. However, little is known on how cells maintain the homeostasis of these intracellular compartments. Using cocaine as a model compound, we have characterized the mechanism of deregulated vacuolation in cultured rat liver epithelial Clone 9 cells. The vacuoles were observed as early as 10 min following cocaine treatment. Removal of cocaine led to vacuole degeneration, indicating vacuolation is a reversible process. The vacuoles could devour intracellular materials and the vacuoles originated from late endosome/lysosome as indicated by immunofluorescence studies. Instant calcium influx and calmodulin were required for the initiation of vacuole formation. The unique properties of these late endosome/lysosome-derived vacuoles were further discussed. In summary, cocaine elicited a new type of deregulated vacuole and the involvement of calcium/calmodulin in vacuolation could shed light on prevention or treatment of cocaine-induced cytotoxicity.  相似文献   

10.
钙调素普遍存在于真核生物细胞中,是多种生物学作用的信号组分.钙/钙调素信号途径由钙离子,钙调素以及下游的靶蛋白组成,通过与靶蛋白作用而传递信号并且发挥生物学功能.本文主要对于旱,盐,冷以及热胁迫下钙调素结合蛋白的作用进行综述,并对相关研究领域的未来研究方向进行了展望.  相似文献   

11.
NAD kinase is thought to play an important role in the plant cellular responses to biotic and abiotic stress as one of the isoforms of the enzyme is activated by the Ca2 + –calmodulin (CaM) complex. NAD kinase activity was measured after short‐term NaCl stress applied to isolated cells from Lycopersicon esculentum, var. Volgogradskij (NaCl‐sensitive tomato) and L. pimpinellifolium, acc. PE2 (NaCl‐tolerant species). NAD kinase activity remained constant in the sensitive species, whereas a sharp decrease was observed in the tolerant one. After salt treatment, an induction of the calmodulin gene(s) was observed in the two species, together with a 30–50% decrease in ‘active’ CaM content, i.e. CaM able to activate purified NAD kinase, in L. pimpinellifolium. The decrease in NAD kinase activity could not, however, be fully explained by this decrease in active CaM content. A similar decrease in NAD kinase activity was also recorded with other ionic stresses and exposure to high temperatures, but not in the case of drought, exposure to low temperatures, hormonal (indole‐3‐acetic acid and abscisic acid) or H2O2 treatments. External Ca2 + certainly plays a role in the biochemical mechanism(s) leading to NAD kinase inhibition, while no role could be shown for intracellular Ca2 + . In addition, after salt stress, a modification of the redox state of NAD kinase seems to be responsible for the inhibition of the enzyme.  相似文献   

12.
Summary In rabbit ileum, Ca2+/calmodulin (CaM) appears to be involved in physiologically inhibiting the linked NaCl absorptive process, since inhibitors of Ca2+/CaM stimulate linked Na+ and Cl absorption. The role of Ca2+/CaM-dependent phosphorylation in regulation of the brush-border Na+/H+ antiporter, which is believed to be part of the neutral linked NaCl absorptive process, was studied using purified brush-border membrane vesicles, which contain both the Na+/H+ antiporter and Ca2+/CaM-dependent protein kinase(s) and its phosphoprotein substrates. Rabbit ileal villus cell brush-border membrane vesicles were prepared by Mg precipitation and depleted of ATP. Using a freezethaw technique, the ATP-depleted vesicles were loaded with Ca2+, CaM, ATP and an ATP-regenerating system consisting of creatine kinase and creatine phosphate. The combination of Ca2+/CaM and ATP inhibited Na+/H+ exchange by 45±13%. This effect was specific since Ca2+/CaM and ATP did not alter diffusive Na+ uptake, Na+-dependent glucose entry, or Na+ or glucose equilibrium volumes. The inhibition of the Na+/H+ exchanger by Ca2+/CaM/ATP was due to an effect on theV max and not on theK m for Na+. In the presence of CaM and ATP, Ca2+ caused a concentration-dependent inhibition of Na+ uptake, with an effect 50% of maximum occurring at 120nm. This Ca2+ concentration dependence was similar to the Ca2+ concentration dependence of Ca2+/CaM-dependent phosphorylation of specific proteins in the vesicles. The Ca2+/CaM/ATP-inhibition of Na+/H+ exchange was reversed by W13, a Ca2+/CaM antagonist, but not by a hydrophobic control, W12, or by H-7, a protein kinase C antagonist. we conclude that Ca2+, acting through CaM, regulates ileal brush-border Na+/H+ exchange, and that this may be involved in the regulation of neutral linked NaCl absorption.  相似文献   

13.
The cell growth‐promoting peptide phytosulfokine (PSK) is perceived by leucine‐rich repeat (LRR) receptor kinases. To elucidate PSK receptor function we analyzed PSKR1 kinase activity and binding to Ca2+ sensors and evaluated the contribution of these activities to growth control in planta. Ectopically expressed PSKR1 was capable of auto‐ and transphosphorylation. Replacement of a conserved lysine within the ATP‐binding region by a glutamate resulted in the inhibition of auto‐ and transphosphorylation kinase activities. Expression of the kinase‐inactive PSKR1(K762E) receptor in the pskr null background did not restore root or shoot growth. Instead, the mutant phenotype was enhanced suggesting that the inactive receptor protein exerts growth‐inhibitory activity. Bioinformatic analysis predicted a putative calmodulin (CaM)‐binding site within PSKR1 kinase subdomain VIa. Bimolecular fluorescence complementation analysis demonstrated that PSKR1 binds to all isoforms of CaM, more weakly to the CaM‐like protein CML8 but apparently not to CML9. Mutation of a conserved tryptophan (W831S) within the predicted CaM‐binding site strongly reduced CaM binding. Expression of PSKR1(W831S) in the pskr null background resulted in growth inhibition that was similar to that of the kinase‐inactive receptor. We conclude that PSK signaling requires Ca2+/CaM binding and kinase activity of PSKR1 in planta. We further propose that the inactivated kinase interferes with other growth‐promoting signaling pathway(s).  相似文献   

14.
The roles of protein undernutrition as well as selenium (Se) and zinc (Zn) supplementation on the ability of calmodulin (CaM) to activate erythrocyte ghost membrane (EGM) Ca2+‐ATPase and the calmodulin genes and protein expressions in rat's cortex and cerebellum were investigated. Rats on adequate protein diet and protein‐undernourished (PU) rats were fed with diet containing 16% and 5% casein, respectively, for a period of 10 weeks. The rats were then supplemented with Se and Zn at a concentration of 0.15 and 227 mg l−1, respectively, in drinking water for 3 weeks. The results obtained from the study showed significant reductions in synaptosomal plasma membrane Ca2+‐ATPase (PMCA) activity, Ca2+/CaM activated EGM Ca2+ATPase activity and calmodulin genes and protein expressions in PU rats. Se or Zn supplementation improved the ability of Ca2+/CaM to activate EGM Ca2+‐ATPase and protein expressions. Se or Zn supplementation improved gene expression in the cerebellum but not in the cortex. Also, the activity of PMCA was significantly improved by Zn. In conclusion, it is postulated that Se and Zn might be beneficial antioxidants in protecting against neuronal dysfunction resulting from reduced level of calmodulin such as present in protein undernutrition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Changes in calmodulin (CaM) levels in embryonic axes of Cicer arietinum L. cv. Castellana germinated under three different conditions were measured. Abscisic acid (ABA) and a temperature of 30°C, which delay chick-pea germination, respectively decreased and increased the concentration of CaM compared to the values obtained under normal germinating conditions (H2O-25°C). The CaM concentration was higher in those zones of the axes undergoing an active cell division.
The compartmentalization of CaM in 36-h-old embryonic axes grown under these three conditions was also measured. Cytosolic and mitochondrial CaM was higher in axes where a delayed germination occurred as well as in the cell walls of normally grown ones. On the other hand, CaM was higher in nuclear and microsomal fractions extracted from H2-O-25°C-treated axes. From these data we postulate that delayed germination could be an effect of altered CaM distribution in chick-pea embryonic axes.  相似文献   

16.
Dye coupling in the organ of Corti   总被引:3,自引:0,他引:3  
Summary Dye-coupling in an in vitro preparation of the supporting cells of the guinea-pig organ of Corti was evaluated by use of the fluorescent dyes, Lucifer Yellow, fluorescein and 6 carboxyfluorescein. Despite the presence of good electrical coupling in Hensen cells (coupling ratios >0.6) the spread of Lucifer yellow was inconsistent. Hensen cells are very susceptible to photoinactivation, i.e., cell injury upon illumination of intracellular dye; and this in conjunction with Lucifer Yellow's charge and K+-induced precipitability may account for its variability of spread. Fluorescein and 6 carboxyfluorescein, on the other hand, spread more readily and to a greater extent than Lucifer Yellow, often spreading to cell types other than those of Hensen. Dye spread is rapid, occurring within a few minutes. These results suggest that molecules of metabolic importance also may be shared by the supporting cells of the organ of Corti.  相似文献   

17.
The effect of zinc deficiency on calmodulin function was investigated by assessing the in vivo activity of two calmodulin regulated enzymes, adenosine 3′,5′-monophosphate (c-AMP) and guanosine 3′,5′-monophosphate (c-GMP) phosphodiesterase (PDE) in several rat tissues. Enzymatic activities in brain, heart, and testis of rats fed a zinc deficient diet were compared with activities in these tissues from pair fed, zinc supplemented rats. In testis, a tissue in which zinc concentration decreased with zinc deficient diet, enzyme activities were significantly decreased over those in rats who were pair fed zinc supplemented diets. In brain and heart, tissues in which zinc concentrations did not change with either diet, enzymatic activities between the groups were not different. These results indicate that zinc deficiency influences the activity of calmodulin-regulated phosphodiesterases in vivo supporting the hypothesis that zinc plays a role in calmodulin function in vivo in zinc sensitive tissues.  相似文献   

18.
Abstract Calmodulin (Cam), the heat-stable, ubiquitous, Ca2+-dependent regulator protein, has been purified to apparent homogeneity from germinating radish seeds (Raphanus sativus). The characteristics of radish Cam-molecular weight, absorption spectrum, Ca2+-dependent activation of brain phosphodiesterase (PDE)-are very similar to those described for Cam from other plant materials. Radish Cam, like other plant Cam, shows some differences to Cam of calf brain. The total amount of Cam in radish embryos at 24 h of germination is ca. 37 μg g−1 fresh weight. Approximately 95% of the total amount of Cam is present in the soluble fraction (supernatant at 100,000 g). The level in the embryo axis strongly increases in the first 24 h of germination (+540%); this increase is strongly reduced when the germination is inhibited by abscisic acid (ABA). In the presence of Ca2+, no ‘free’ Cam (i.e. not bound to other structures) is present in the soluble fraction, suggesting that, during early germination, Cam level is a limiting factor for the activities of Ca2+ -Cam-dependent systems. These studies suggest that Cam plays an important role in the early phases of seed germination. An inhibitor of the Ca2+-Cam-dependent phosphodiesterase is present in the soluble fraction from radish embryos; this substance decreases during germination. A possible role of this inhibitor during the early germination phases is hypothesized.  相似文献   

19.
Selwa E  Laine E  Malliavin TE 《Proteins》2012,80(4):1028-1040
The catalytic adenyl cyclase (AC) domain of the protein CyaA from Bordetella pertussis is activated by interaction with the C terminal lobe of calmodulin (C-CaM). The AC/C-CaM complex displays an elongated shape, but hydrodynamics measurements on the isolated AC domain allowed to characterize the shape of the protein as spherical. Here, we study by molecular dynamics simulations the complexes between AC and the apo and Ca(2+)-loaded C-CaM, as well as the isolated AC, to characterize the features of AC conformational variability and of AC/C-CaM interaction. The removal of calcium ions from C-CaM increases the AC flexibility, but the removal of C-CaM induces a dramatic drift of the AC conformation. Isolated AC conformations show a general tendency to become less elongated, as the two protein extremities (regions SA and CB) tend to get closer. An analysis of the energetic influences between the C-CaM and the AC regions shows a simple influence scheme, in agreement with the high affinity of AC to CaM. In this scheme, a single influence is observed from C-CaM to the region CA of the AC domain. This influence is correlated to the presence of hydrogen bonds involving residues from C-CaM, and from regions CA, C-terminal tail, and catalytic loop of AC. This study reveals a C-CaM/AC interaction picture where C-CaM stabilizes AC by a steric hindrance on the conformational drift of SA, whereas the Ca(2+) ions allow further stabilization by the establishment of a hydrogen bond network extending from C-CaM to the AC catalytic loop.  相似文献   

20.
Connections between connexins, calcium, and cataracts in the lens   总被引:5,自引:0,他引:5  
There is a good deal of evidence that the lens generates an internal micro circulatory system, which brings metabolites, like glucose, and antioxidants, like ascorbate, into the lens along the extracellular spaces between cells. Calcium also ought to be carried into the lens by this system. If so, the only path for Ca2+ to get out of the lens is to move down its electrochemical gradient into fiber cells, and then move by electrodiffusion from cell to cell through gap junctions to surface cells, where Ca-ATPase activity and Na/Ca exchange can transport it back into the aqueous or vitreous humors. The purpose of the present study was to test this calcium circulation hypothesis by studying calcium homeostasis in connexin (Cx46) knockout and (Cx46 for Cx50) knockin mouse lenses, which have different degrees of gap junction coupling. To measure intracellular calcium, FURA2 was injected into fiber cells, and the gradient in calcium concentration from center to surface was mapped in each type of lens. In wild-type lenses the coupling conductance of the mature fibers was approximately 0.5 S/cm2 of cell to cell contact, and the best fit to the calcium concentration data varied from 700 nM in the center to 300 nM at the surface. In the knockin lenses, the coupling conductance was approximately 1.0 S/cm2 and calcium varied from approximately 500 nM at the center to 300 nM at the surface. Thus, when the coupling conductance doubled, the concentration gradient halved, as predicted by the model. In knockout lenses, the coupling conductance was zero, hence the efflux path was knocked out and calcium accumulated to approximately 2 microM in central fibers. Knockout lenses also had a dense central cataract that extended from the center to about half the radius. Others have previously shown that this cataract involves activation of a calcium-dependent protease, Lp82. We can now expand on this finding to provide a hypothesis on each step that leads to cataract formation: knockout of Cx46 causes loss of coupling of mature fiber cells; the efflux path for calcium is therefore blocked; calcium accumulates in the central cells; at concentrations above approximately 1 microM (from the center to about half way out of a 3-wk-old lens) Lp82 is activated; Lp82 cleaves cytoplasmic proteins (crystallins) in central cells; and the cleaved proteins aggregate and scatter light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号