首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short-term effects of high concentrations of Methylprednisolone (MP) on the energy metabolism of quiescent and Concanavalin A-stimulated rat thymocytes were investigated in vitro. Concanavalin A (ConA) stimulated the respiration rate of quiescent thymocytes by 35%. Addition of more than 0.15 mg MP/107 cells to ConA-stimulated cells reversed this respiratory stimulation; in addition, higher concentrations of MP caused a similar progressive decrease in the rate of respiration of both quiescent and ConA-stimulated cells. Similarly, the stimulation of respiration by ConA was greatly reduced in MP-treated cells. MP addition lowered cytoplasmic [Ca2+] and, at high concentrations, abolished the ability of ConA to increase [Ca2+]. Thus MP both reverses and prevents the immediate stimulation of thymocytes by ConA.In quiescent thymocytes, MP strongly inhibited that part of the oxygen consumption used to drive the cycle of Na+ influx across the plasma membrane and Na+ efflux on the Na+K+-ATPase, but did not inhibit oxygen consumption used to drive protein synthesis. In ConA-stimulated thymocytes MP had the same effects and also strongly inhibited oxygen consumption dependent on the cycle of Ca2+ influx across the plasma membrane and Ca2+ efflux on the Ca2+-ATPase, but had little effect on oxygen consumption used to drive RNA and DNA synthesis.These results show that MP prevents cation cycling in thymocytes (either by preventing cation influx or by inhibiting cation pumps) and prevents mitogenic stimulation of the cells. The high MP concentration required and the speed of onset of the effect (lless than 30s) provide strong evidence that these effects of MP are not mediated by glucocorticoid receptors and subsequent activation of gene expression. They may be caused by direct effects of MP on the properties of the plasma membrane. These effects are considered to be, at least partially, responsible for the beneficial results that currently have been obtained using MP megadoses in various clinical situations.  相似文献   

2.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

3.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

4.
Interference of phytohormones (jasmonic, gibberellic, and abscisic acids) and synthetic growth regulator melafen on Ca2+ translocation across the membrane of plasma membrane vesicles prepared from dormant potato (Solanum tuberosum L.) tubers was studied. The activity of plasma membrane Ca2+, Mg2+-ATPase was stimulated by melafen and jasmonic and gibberellic acids and suppressed by abscisic acid. These substrances did not change the passive membrane permeability for Ca2+. The pattern of the effect of melafen on the activity of Ca2+,Mg2+-ATPase depended on the presence of phytohormones in incubation medium. When melafen and each phytohormone were simultaneously added to incubation medium, their effects were not additive, which indicates that the effects of the tested compounds on the Ca2+ uptake into the plasma membrane vesicles are interdependent. Apparently, the interaction between the phytohormones and plasma membrane components modulates the response to melafen.  相似文献   

5.
Phospholipase A2 and Its Role in Brain Tissue   总被引:6,自引:4,他引:2  
Abstract: Phospholipase A2 (PLA2) is the name for the class of lipolytic enzymes that hydrolyze the acyl group from the sn-2 position of glycerophospholipids, generating free fatty acids and lysophospholipids. The products of the PLA2-catalyzed reaction can potentially act as second messengers themselves, or be further metabolized to eicosanoids, platelet-activating factor, and lysophosphatidic acid. All of these are recognized as bioactive lipids that can potentially alter many ongoing cellular processes. The presence of PLA2 in the central nervous system, accompanied by the relatively large quantity of potential substrate, poses an interesting dilemma as to the role PLA2 has during both physiologic and pathologic states. Several different PLA2 enzymes exist in brain, some of which have been partially characterized. They are classified into two subtypes, CA2+-dependent and Ca2+-independent, based on their catalytic dependence on Ca2+. Under physiologic conditions, PLA2 may be involved in phospholipid turnover, membrane remodeling, exocytosis, detoxification of phospholipid peroxides, and neurotransmitter release. However, under pathological situations, increased PLA2 activity may result in the loss of essential membrane glycerophospholipids, resulting in altered membrane permeability, ion homeostasis, increased free fatty acid release, and the accumulation of lipid peroxides. These processes, along with loss of ATP, may be responsible for the loss of membrane phospholipid and subsequent neuronal injury found in ischemia, spinal cord injury, and other neurodegenerative diseases. This review outlines the current knowledge of the PLA2 found in the central nervous system and attempts to define the role of PLA2 during both physiologic and pathologic conditions.  相似文献   

6.
Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K+ channels (mitoKATP) protects the heart against ischemic damage. This study examined the effects of mitoKATP and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia). Both mitoKATP opening, using diazoxide, and the prevention of mitochondrial permeability transition, using cyclosporin A, protected against cellular damage, without additive effects. MitoKATP opening in isolated rat heart mitochondria slightly decreased Ca2+ uptake and prevented mitochondrial reactive oxygen species production, most notably in the presence of added Ca2+. In ischemic cells, diazoxide decreased ROS generation during cyanide/aglycemia while cyclosporin A prevented oxidative stress only during simulated reperfusion. Collectively, these studies indicate that opening mitoKATP prevents cellular death under conditions of ischemia/reperfusion by decreasing mitochondrial reactive oxygen species release secondary to Ca2+ uptake, inhibiting mitochondrial permeability transition.  相似文献   

7.
The effect of Ca2+ on programmed death of guard cells (GC) and epidermal cells (EC) determined from destruction of the cell nucleus was investigated in epidermis of pea leaves. Ca2+ at concentrations of 1–100 μM increased and at a concentration of 1 mM prevented the CN—induced destruction of the nucleus in GC, disrupting the permeability barrier of GC plasma membrane for propidium iodide (PI). Ca2+ at concentrations of 0.1–1 mM enhanced drastically the number of EC nuclei stained by PI in epidermis treated with chitosan, an inducer of programmed cell death. The internucleosomal DNA fragmentation caused by CN? was suppressed by 2 mM Ca2+ on 6 h incubation, but fragmentation was stimulated on more prolonged treatment (16 h). Presumably, the disruption of the permeability barrier of plasma membrane for PI is not a sign of necrosis in plant cells. Quinacrine and diphenylene iodonium at 50 μM concentration prevented GC death induced by CN? or CN? + 0.1 mM Ca2+ but had no influence on respiration and photosynthetic O2 evolution in pea leaf slices. The generation of reactive oxygen species determined from 2′,7′-dichlorofluorescein fluorescence was promoted by Ca2+ in epidermal peels from pea leaves.  相似文献   

8.
Leshem, Y. Y. 1987. Membrane phospholipid catabolism and Ca2+ activity in control of senescence. A key role in the regulation of plant development and senescence appears to be a finely balanced equilibrium between membrane phospholipid catabolism on the one hand, and synthesis and remodelling on the other. In the catabolic “phosphatidyl-linoleyl(-enyl) cascade”, entering of Ca2+ into the cytosol triggers the catabolic process by binding to calmodulin and activating phospholipase A2, (EC 3.1.1.4). The latter proceeds to release linoleic or linolenic acid from the sn-2 (stereospecific numbering) location of intact phospholipid, thus providing substrate for lipoxygenase (EC 1.13.11.12). The action of lipoxygenase then generates a series of oxy-free radicals, ethylene, endogenous Ca2+ ionophores, malondialdehyde and jasmonic acid. These may recycle to the membrane, causing the entry of more Ca2+ and induction of a further, identical catabolic cycle. With increased cycling, membranes become progressively senescent and undergo biophysical changes altering microviscosity, fluidity, phase configurations of membrane phospholipids and transition temperatures. The cascade does not appear to be specific for the phospholipid substrate, and it is envisaged that besides phospholipase A2, both phospholipase B (EC 3.1.1.5) and lipolytic acylhydrolase could participate in the process. A parallel process counteracting the above, is membrane remodelling and turnover, proceeding initially by the same Ca2+- and possibly calmodulin-triggering, but leading via phospholipase C (EC 3.1.4.10) action and diacylglycerol formation to protein kinase activation and proton pump recharging. It is speculated that auxin and cytoki-nin, albeit by different pathways, induce this route, for which membrane phospho-inositides may be the preferred membrane-associated phospholipid substrate.  相似文献   

9.
Patch–clamping mitoplasts isolated from human colon carcinoma 116 cells has allowed the identification and characterization of the intermediate conductance Ca2+-activated K+-selective channel KCa3.1, previously studied only in the plasma membrane of various cell types. Its identity has been established by its biophysical and pharmacological properties. Its localisation in the inner membrane of mitochondria is indicated by Western blots of subcellular fractions, by recording of its activity in mitochondria made fluorescent by a mitochondria-targeted fluorescent protein and by the co-presence of channels considered to be markers of the inner membrane. Moderate increases of mitochondrial matrix [Ca2+] will cause mtKCa3.1 opening, thus linking inner membrane K+ permeability and transmembrane potential to Ca2+ signalling.  相似文献   

10.
1. Although the mechanism of action of a-adrenergic agonists in liver tissue is somewhat complex, a number of experimental approaches can be usefully employed to identify the molecular details of the events that occur. 2. Receptors specific for α1-adrenergic agonists located on the plasma membranes of rat liver cells have been partially characterized using pharmacological agents, affinity labels and monoclonal antibodies. Much of this work has employed isolated plasma membrane fractions and does not take account of tissue-related factors which may now be studied in the intact perfused rat liver, following the development of an appropriate assay system. 3. Because a redistribution of cellular Ca2+ is central to the mechanism of action of a-adrenergic agonists in liver, it is important to first gain an understanding of basic cellular Ca2+ regulation. Knowledge about the compartmentation of cellular calcium and about Ca2+-translocation systems located in the mitochondria, plasma membrane and endoplasmic reticulum is now quite extensive. However, the role of mitochondria in the regulation of intracellular Ca2+ is still unclear; it now appears that the mitochondrial calcium content is much less than considered previously. This may have important implications for such a regulatory role. 4. The sequence of Ca2+ movements that may occur when a-adrenergic agonists interact with liver have been identified and are as follows: (a) Ca2+ is mobilized from an intracellular pool(s) (mitochondria plus endoplasmic reticulum and/or plasma membranes). (b) This elevates the cytoplasmic free Ca2+ concentration and leads to an efflux of the ion from the cell. (c) At this time, Ca2+-sensitive metabolic events in the cytoplasm are activated and an increase in Ca2+-cycling occurs across the plasma membrane. (d) Immediately after the hormone is withdrawn, there is a net influx of Ca2+ into the cell, and the intracellular Ca2+ pools and transmembrane fluxes are restored to the pre-induced states. In this model, Ca2+ movements across the plasma membrane play a key role in regulating the cytoplasmic Ca2+ concentration. 5. In the perfused rat liver it has been possible to define in quite precise terms the amounts and rates of Ca2+ mobilized in each of these stages. 6. Although several proposals for ‘second messengers’ to link the hormone-receptor interaction with initial Ca2+ mobilization have been made, at this time only polyphosphoinositide turnover appears to be a suitable candidate.  相似文献   

11.
The effects of hydrophobic and hydrophilic bile acids as inducers of Ca2+-dependent permeability of the inner membrane were studied on isolated liver mitochondria. It is shown that in the absence of the inorganic phosphate (Pi)–a modulator of the mitochondrial pore–hydrophobic bile acids (lithocholic, deoxycholic, chenodeoxycholic) at concentrations of 20–50 μM, as well as a hydrophilic cholic acid at a concentration of 800 μM, induce swelling of liver mitochondria loaded with Ca2+. This effect is completely eliminated by a specific inhibitor of mitochondrial pore cyclosporin A (CsA). The effect of the bile acids as inducers of Ca2+-dependent CsA-sensitive mitochondrial pore is not associated with the modulation of the Pi effects. In contrast to other tested bile acids, a hydrophilic ursodeoxycholic acid (UDCA) at a concentration of 400 μM is able to induce Ca2+-dependent CsA-sensitive pore opening in liver mitochondria only in the presence of Pi or in the absence of potassium chloride in the incubation medium. In the presence of potassium chloride but in the absence of Pi, UDCA effects associated with the induction of the inner membrane permeability (swelling of mitochondria, drop in Δψ, and Ca2+ release from the matrix) are also observed in the presence of CsA. This Ca2+-dependent permeability of the inner membrane, in contrast to the “classical” CsA-sensitive pore, is characterized by a lower intensity of the mitochondrial swelling, a total drop in Δψ, and Ca2+ release from the matrix and is blocked by Pi. We suggest that the induction of the CsA-insensitive permeability in the inner mitochondrial membrane by UDCA is associated with activation of electrophoretic influx of K+ into the matrix and Ca2+ release from the matrix in exchange to H+. The effect of Pi as a blocker of such permeability is discussed.  相似文献   

12.
The inotropic action of La3+ on frog myocardium was studied with taking into account its effect on mitochondria of cardiomyocytes (CM). It has been established that in the range of studied concentrations (0.2–6.0 mM), La3+ decreases dose-dependently the force of cardiac contractions (by 3.3–92.2%). In parallel experiments on isolated rat heart mitochondria (RHM), La3+ at a concentration of 25 μM has been shown to cause swelling of non-energized and energized mitochondria incubated in isotonic medium with 125 mM NH4NO3 and in hypotonic medium with 25 mM CH3COOK. The study of oxidative processes in mitochondria with aid of polarographic method of measurement of oxygen concentration has shown that La3+ at concentrations of 50 and 100 μM increases the oxygen consumption rate by mitochondria in the state 2. However, La3+ does not decrease the respiration rate of isolated mitochondria in the state 3, as this takes place in the case of use of Cd2+ or at the Ca2+-overloading of mitochondria. The rate of endogenous respiration of isolated mitochondria in the medium with La3+ was higher than in control, which suggests its effect on ion permeability of the inner membrane. The data obtained in this work indicate that the La3+-produced decrease of contractility of cardiac muscle is not only due to the direct blocking effect on the potential-controlled Ca2+-channels, but is also mediated by its unspecific action on the CM mitochondria. This action is manifested as an acceleration of the energy-dependent K+ transport in matrix and as an increase of ion permeability of the inner mitochondrial membrane (IMM).  相似文献   

13.
Summary The regulation of cellular volume upon exposure to hypoosmotic stress is accomplished by specific plasma membrane permeability changes that allow the efflux of certain intracellular solutes (osmolytes). The mechanism of this membrane permeability regulation is not understood; however, previous data implicate Ca2+ as an important component in the response. The regulation of protein phosphorylation is a pervasive aspect of celllular physiology that is often Ca2+ dependent. Therefore, we tested for osmotically induced protein phosphorylation as a possible mechanism by which Ca2+ may mediate osmotically dependent osmolyte efflux. We have found a rapid increase in32Pi incorporation into two proteins in clam blood cell ghosts after exposure of the intact cells to a hypoosmotic medium. The osmotic component of the stress, not the ionic dilution, was the stimulus for the phosphorylations. The osmotically induced phosphorylation of both proteins was significantly inhibited when Ca2+ was omitted from the medium, or by the calmodulin antagonist. chlorpromazine. These results correlate temporally with cell volume recovery and osmolyte (specifically free amino acid) efflux. The two proteins that become phosphorylated in response to hypoosmotic stress may be involved in the regulation of plasma membrane permeability to organic solutes, and thus. contribute to hypoosmotic cell volume regulation.  相似文献   

14.
Glucose sensing mechanism has been intensively studied in pancreatic cells and neurons. Depolarization of membrane potential by closure of KATP , Kv and TASK channel, and subsequently Ca2+ entry via L-type voltage gated Ca2+ channel (VGCC) are implicated to mediate the signal transduction in these cells. However, the mechanism of non-excitable cells, which are lacking VGCC, for sensing glucose remains unclear. In this study, we utilized the calcium ratio measurement and patch clamping technique to study the effects of low glucose on [Ca2+]i and currents in the human embryonic kidney epithelial cells (HEK 293). We found low glucose evoked a significant reversible [Ca2+]i elevation in HEK 293 independent of the closure of Kv channels. This increase of [Ca2+]i was mediated by Ca2+ entry across plasma membrane and exhibited a dosage dependent behaviour to external glucose concentration. The low glucose-induced entry of Ca2+ was characterized as a voltage independent behaviour and had cation permeability to Na+ and Ca2+. The modulation of PLC, AMPK, tyrosine kinase and cADPribose failed to regulate this glucose-sensitive Ca2+ entry. In addition, the entry of Ca2+ was insensitive to nifedipine, 2APB, SKF, La3+, Gd3+, and KBR9743, suggesting a novel signal pathway in mediating glucose sensing.  相似文献   

15.
The plasma membrane Ca2+-ATPase (PMCA) is a ubiquitously expressed, ATP-driven Ca2+ pump that is critical for maintaining low resting cytosolic Ca2+ ([Ca2+]i) in all eukaryotic cells. Since cytotoxic Ca2+ overload has such a central role in cell death, the PMCA represents an essential “linchpin” for the delicate balance between cell survival and cell death. In general, impaired PMCA activity and reduced PMCA expression leads to cytotoxic Ca2+ overload and Ca2+ dependent cell death, both apoptosis and necrosis, whereas maintenance of PMCA activity or PMCA overexpression is generally accepted as being cytoprotective. However, the PMCA has a paradoxical role in cell death depending on the cell type and cellular context. The PMCA can be differentially regulated by Ca2+-dependent proteolysis, can be maintained by a localised glycolytic ATP supply, even in the face of global ATP depletion, and can be profoundly affected by the specific phospholipid environment that it sits within the membrane. The major focus of this review is to highlight some of the controversies surrounding the paradoxical role of the PMCA in cell death and survival, challenging the conventional view of ATP-dependent regulation of the PMCA and how this might influence cell fate.  相似文献   

16.
The function of synaptotagmin as a Ca2+ sensor in neurotransmitter release involves Ca2+-dependent phospholipid binding to its two C2 domains, but this activity alone does not explain why Ca2+ binding to the C2B domain is more critical for release than Ca2+ binding to the C2A domain. Synaptotagmin also binds to SNARE complexes, which are central components of the membrane fusion machinery, and displaces complexins from the SNAREs. However, it is unclear how phospholipid binding to synaptotagmin is coupled to SNARE binding and complexin displacement. Using supported lipid bilayers deposited within microfluidic channels, we now show that Ca2+ induces simultaneous binding of synaptotagmin to phospholipid membranes and SNARE complexes, resulting in an intimate quaternary complex that we name SSCAP complex. Mutagenesis experiments show that Ca2+ binding to the C2B domain is critical for SSCAP complex formation and displacement of complexin, providing a clear rationale for the preponderant role of the C2B domain in release. This and other correlations between the effects of mutations on SSCAP complex formation and their functional effects in vivo suggest a key role for this complex in release. We propose a model whereby the highly positive electrostatic potential at the tip of the SSCAP complex helps to induce membrane fusion during release.  相似文献   

17.
Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca2+ clearance and partially attenuated cellular acidification during KCl-stimulated Ca2+ influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.  相似文献   

18.
The effect of the alkylating reagent dicyclohexylcarbodiimide (DCCD) on mitochondrial Ca2+ content was studied. The results obtained indicate that DCCD at a concentration of 100 µM induces mitochondrial Ca2+ efflux. This reaction is accompanied by an increasing energy drain on the system, stimulation of oxygen consumption, and mitochondrial swelling. These DCCD effects can be partially suppressed by supplementing the incubation medium with 1 mM phosphate. By electrophoretic analysis on polyacrylamide-sodium dodecyl sulfate, it was found that DCCD binds to a membrane component with anM r of 20 to 29 kDa.  相似文献   

19.
25-Hydroxycholesterol and 25-hydroxy vitamin D-3 increased the permeability of liposomes to Ca2+ measured by the arsenazo III encapsulation technique. This effect was sensitive to the lipid composition of the membrane, with changes that decreased the motional freedom of phospholipid acyl chains decreasing Ca2+ permeability. The greatest permeability was observed with the zwitter-ionic phospholipids, phosphatidylcholine and phosphatidylethanolamine, whereas the acidic phospholipids, phosphatidylinositol and phosphatidylserine, depressed Ca2+ permeability. The effect was not specific for Ca2+. Other divalent cations were translocated in the order Mn2+ > Mg2+  Ca2+ ? Sr2+  Ba2+. The permeability of liposomes to the monovalent cation, Na+, was also substantially increased. The effect did not appear to be due to ionophoretic properties of the sterols, and it is suggested that perturbation of the membranes by the polar 25-hydroxyl group may play a role in increasing membrane permeability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号