首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We report here the genetic, molecular, and functional characterization of the Drosophila melanogaster minifly (mfl) gene. Genetic analysis shows that mfl is essential for Drosophila viability and fertility. While P-element induced total loss-of-function mutations cause lethality, mfl partial loss-of-function mutations cause pleiotropic defects, such as extreme reduction of body size, developmental delay, hatched abdominal cuticle, and reduced female fertility. Morphological abnormalities characteristic of apoptosis are found in the ovaries, and a proportion of eggs laid by mfl mutant females degenerates during embryogenesis. We show that mfl encodes an ubiquitous nucleolar protein that plays a central role in ribosomal RNA processing and pseudouridylation, whose known eukaryotic homologues are yeast Cfb5p, rat NAP57 and human dyskerin, encoded by the gene responsible for the X-linked dyskeratosis congenita disease. mfl genetic analysis represents the first in vivo functional characterization of a member of this highly conserved gene family from higher eukaryotes. In addition, we report that mfl hosts an intron encoded box H/ACA snoRNA gene, the first member of this class of snoRNAs identified so far from Drosophila.  相似文献   

2.
3.
4.
5.
6.
We have identified the cmp44E gene which encodes a putative multi-pass transmembrane protein that is conserved from yeast to humans. The expression of cmp44E during embryogenesis is ubiquitous with notably higher levels in the CNS and brain. It is also expressed in the germline during the germarial stages as well as several later stages of oogenesis. Utilizing a P-element insertion at the 5′ end of cmp44E we have isolated several deletions, created by imprecise excision events, which eliminate most or all of its coding region. Analysis of these deficiencies has revealed that cmp44E is an essential gene required for embryogenesis. Results obtained from germline clone analysis indicate that cmp44E is not only required in the germline stem cells early in oogenesis, but is also required in other tissues probably due to it being required for cell viability. Finally, using germline transformation, we have identified a minimal genomic fragment capable of fully rescuing a null allele of cmp44E. Dev. Genet. 23:264–274, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The Y-box proteins are a family of highly conserved nucleic acid binding proteins which are conserved from bacteria to human. In this report we have identified a new member of this family from Drosophila melanogaster. Degenerate-PCR was used to identify a conserved region within the highly conserved cold-shock domain (CSD) of Y-box proteins. Subsequently, the cDNA for this gene was sequenced, and the identified open reading frame was named ypsilon schachtel (yps). The expression pattern of yps indicates that this gene is expressed throughout development with the highest level of expression found in adult flies. In situ hybridization shows that the yps mRNA is maternally loaded into the egg cytoplasm. In addition, there appears to be expression of yps mRNA in mesodermal tissue during embryogenesis. YPS, while containing a conserved CSD, is novel in that it completely lacks the alternating acidic and basic regions found in the C-terminus of the other vertebrate eukaryotic Y-box proteins. The CSD of yps was purified and gel-shift analysis showed that this domain can interact with RNA. We predict that YPS would be an RNA-binding protein due to these results and the motifs which have been identified within the amino acid sequence.  相似文献   

8.
Peng H  Chang B  Lu C  Su J  Wu Y  Lv P  Wang Y  Liu J  Zhang B  Quan F  Guo Z  Zhang Y 《PloS one》2012,7(1):e30344
  相似文献   

9.
10.
The Sec7 domain guanine nucleotide exchange factors (GEFs) for the GTPase ARF are highly conserved regulators of membrane dynamics and protein trafficking. The interactions of large ARF GEFs with cellular membranes for localization and/or activation are likely to participate in regulated recruitment of ARF and effectors. However, these interactions remain largely unknown. Here we characterize Gmh1p, the first Golgi transmembrane-domain partner of any of the high-molecular-weight ARF-GEFs. Gmh1p is an evolutionarily conserved protein. We demonstrate molecular interaction between the yeast Gmh1p and the large ARF-GEFs Gea1p and Gea2p. This interaction involves a domain of Gea1p and Gea2p that is conserved in the eukaryotic orthologues of the Gea proteins. A single mutation in a conserved amino acid residue of this domain is sufficient to abrogate the interaction, whereas the overexpression of Gmh1p can compensate in vivo defects caused by mutations in this domain. We show that Gmh1p is an integral membrane protein that localizes to the early Golgi in yeast and in human HeLa cells and cycles through the ER. Hence, we propose that Gmh1p acts as a positive Golgi-membrane partner for Gea function. These results are of general interest given the evolutionary conservation of both ARF-GEFs and the Gmh proteins.  相似文献   

11.
SCO-spondin is a multidomain glycoprotein secreted by the subcommissural organ (SCO). It belongs to the thrombospondin type 1 repeat superfamily and has been identified in several vertebrate species. We report the cloning of the chick SCO-spondin ortholog and examine its temporal and spatial expression during early embryogenesis from Hamburger and Hamilton (HH) stage 12 to HH stage 21. Chick SCO-spondin cDNA contains a long open reading frame encoding a predicted protein of 5255 amino acids. Northern blot analysis has revealed SCO-spondin mRNA as a band of about 15 kb. Many conserved domains have been identified, including 27 thrombospondin type 1 repeats, 13 low-density lipoprotein receptor type A domains, one EMI domain (a cysteine-rich domain of extracellular proteins), three von Willebrand factor type D domains, and one cystine knot C-terminal domain. Whole-mount in situ hybridization enabled the first signal of mRNA expression to be detected at HH stage 17, exclusively in a thin area of the prosencephalon roof plate. During the following stages of development, SCO-spondin expression remained restricted to this region. The multidomain structure of SCO-spondin and its early expression suggest that it plays a role in developmental processes in the central nervous system.  相似文献   

12.
13.
Protein kinases are important signaling molecules that are known constituents of cellular pathways critical for normal cellular growth and development. We have recently identified a new protein kinase, p58, which contains a large domain that is highly homologous to the cell division control p34cdc2 protein kinase. This new cell division control-related protein kinase was originally identified as a component of semipurified galactosyltransferase; thus, it has been denoted galactosyltransferase-associated protein kinase. In vitro, this protein kinase has been shown to phosphorylate a number of substrates, including histone H1, casein, and galactosyltransferase. In vivo, we have found that this protein kinase affects galactosyltransferase enzyme activity and that it is apparently involved in some aspect of normal cell cycle regulation. In this report, we find that the p58 gene is evolutionarily well conserved and expressed ubiquitously, but to varying extents, in adult tissues. In developmentally staged embryos, p58 expression was elevated early in embryogenesis and then decreased dramatically. In the murine submandibular gland, p58 expression was elevated between day 14 and day 16 post coitus. Expression in the submandibular gland appeared to parallel the proliferation and differentiation of specific cell types as judged by in situ hybridization. These studies indicate that the p58 protein kinase may have a critical function during normal embryonic development and that this protein kinase continues to be expressed in differentiated adult tissues.  相似文献   

14.
15.
We recently identified a novel phospholipase Cdelta isoform, PLC-deltasu, in sea urchin gametes, whose precise functional role during fertilization and early embryogenesis remains unknown. Here, we characterized the binding of the PLC-deltasu PH domain to different phosphatidylinositol (PI) phospholipids and studied changes in its localization during fertilization. The PLC-deltasu PH domain bound most strongly to PI(3,4)P(2) and PI(3,5)P(2) phospholipids, in contrast to the PLCdelta1 PH domain which bound predominantly to PI(4,5)P(2). A green fluorescent protein tagged PLC-deltasu PH domain localized to the plasma membrane and its localization increased at fertilization and following addition of a Ca(2+) ionophore. However, recombinant PLC-deltasu failed to cause Ca(2+) signals like those seen at fertilization, in mouse and sea urchin eggs. Our findings suggest that PLC-deltasu is unlikely to be directly involved in the process of egg activation but may play a role in mediating extracellular signals transmitted via the PI 3'-kinase pathway.  相似文献   

16.
We have previously reported (Petruzzelli, L., Herrera, R., Garcia, R., and Rosen, O. M. (1985) Cancer Cells 3, 115-121) that adult Drosophila melanogaster contain a specific, high-affinity insulin-binding protein. Insulin-dependent protein tyrosine kinase activity has now been identified in Drosophila. Activity first appears at 6-12 h of embryogenesis, increases during the 12-18-h period and falls to low levels in the adult. 125I-insulin was cross-linked specifically and with high affinity to a protein (Mr = 135,000) throughout embryogenesis and in the adult. However, during the 6-12- and 12-18-h periods of embryogenesis when insulin-dependent protein tyrosine kinase activity is expressed, another protein (Mr = 100,000) becomes cross-linked to 125I-insulin. Crosslinking to both proteins was competitively inhibited by the addition of 100 nM insulin. We conclude that the insulin-binding and insulin-dependent protein tyrosine kinase activities of the mammalian insulin receptor are conserved in Drosophila. However, the insulin-dependent protein tyrosine kinase activity of the receptor is detected only during specific times in embryogenesis.  相似文献   

17.
During the first cell cycle of Caenorhabditis elegans embryogenesis, asymmetries are established that are essential for determining the subsequent developmental fates of the daughter cells. The maternally expressed par genes are required for establishing this polarity. The products of several of the par genes have been found to be themselves asymmetrically distributed in the first cell cycle. We have identified the par-4 gene of C. elegans, and find that it encodes a putative serine-threonine kinase with similarity to a human kinase associated with Peutz-Jeghers Syndrome, LKB1 (STK11), and a Xenopus egg and embryo kinase, XEEK1. Several strong par-4 mutant alleles are missense mutations that alter conserved residues within the kinase domain, suggesting that kinase activity is essential for PAR-4 function. We find that the PAR-4 protein is present in the gonads, oocytes and early embryos of C. elegans, and is both cytoplasmically and cortically distributed. The cortical distribution begins at the late 1-cell stage, is more pronounced at the 2- and 4-cell stages and is reduced at late stages of embryonic development. We find no asymmetry in the distribution of PAR-4 protein in C. elegans embryos. The distribution of PAR-4 protein in early embryos is unaffected by mutations in the other par genes.  相似文献   

18.
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.  相似文献   

19.
SARs (scaffold attachment regions) are candidate DNA elements for partitioning eukaryotic genomes into independent chromatin loops by attaching DNA to proteins of a nuclear scaffold or matrix. The interaction of SARs with the nuclear scaffold is evolutionarily conserved and appears to be due to specific DNA binding proteins that recognize SARs by a mechanism not yet understood. We describe a novel, evolutionarily conserved protein domain that specifically binds to SARs but is not related to SAR binding motifs of other proteins. This domain was first identified in human scaffold attachment factor A (SAF-A) and was thus designated SAF-Box. The SAF-Box is present in many different proteins ranging from yeast to human in origin and appears to be structurally related to a homeodomain. We show here that SAF-Boxes from four different origins, as well as a synthetic SAF-Box peptide, bind to natural and artificial SARs with high specificity. Specific SAR binding of the novel domain is achieved by an unusual mass binding mode, is sensitive to distamycin but not to chromomycin, and displays a clear preference for long DNA fragments. This is the first characterization of a specific SAR binding domain that is conserved throughout evolution and has DNA binding properties that closely resemble that of the unfractionated nuclear scaffold.  相似文献   

20.
In humans, defects in peroxisome assembly result in the peroxisome biogenesis disorders (PBDs), a group of genetically heterogeneous, lethal recessive diseases. We have identified the human gene PXAAA1 based upon its similarity to PpPAS5, a gene required for peroxisome assembly in the yeast Pichia pastoris. Expression of PXAAA1 restored peroxisomal protein import in fibroblasts from 16 unrelated members of complementation group 4 (CG4) of the PBD. Consistent with this observation, CG4 patients carry mutations in PXAAA1. The product of this gene, Pxaaa1p, belongs to the AAA family of ATPases and appears to be a predominantly cytoplasmic protein. Substitution of an arginine for the conserved lysine residue in the ATPase domain of Pxaaa1p abolished its biological activity, suggesting that Pxaaa1p is an ATPase. Furthermore, Pxaaa1p is required for stability of the predominantly cytoplasmic PTS1 receptor, Pxr1p. We conclude that Pxaaa1p plays a direct role in peroxisomal protein import and is required for PTS1 receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号