首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New insect system for testing antibiotics   总被引:1,自引:0,他引:1  
New and efficient methods to screen antibiotics are needed to counter increased antibiotic resistance in pathogens and the emergence of new diseases. Here we report a new insect model for screening antibiotics in vivo using the grasshopper Romalea microptera. The system is inexpensive, efficient, and flexible, avoids animal-welfare problems, and can be used to test against most major pathogenic groups. We employed this system to test 11 commercial antibiotics against a pathogenic Encephalitozoon species (Microsporidia). Oral treatment with fumagillin or thiabendazole significantly reduced pathogen spore counts, whereas spore counts of grasshoppers fed with albendazole, ampicillin, chloramphenicol, griseofulvin, metronidazole, sulfadimethoxine, or tetracycline were not significantly different from the infected controls. Quinine produced a distinct, but nonsignificant, reduction in spores, and streptomycin a nonsignificant increase in spores. Although 2 antibiotics significantly reduced spore counts, in no case was the pathogen totally eliminated. This study demonstrates the validity of this system as a method to screen antibiotics. It also corroborates the difficulty researchers and physicians have had in treating microsporidia infections, and suggests that quinine and related alkaloid compounds should be further examined as possible therapeutic agents against this group of ubiquitous pathogens. In addition, streptomycin and related compounds should be tested to determine if this widely used antibiotic enhances microsporidiosis.  相似文献   

2.

Background

The Apicomplexa are a diverse group of obligate protozoan parasites infesting a wide range of invertebrate and vertebrate hosts including humans. These parasites are notoriously difficult to control and many species continue to evolve resistance to commercial antibiotics. In this study, we sought to find an effective chemotherapeutic treatment against arthropod gregarines (Apicomplexa), and to identify candidate compounds for testing against other groups of protozoan parasites.

Methods

We tested eleven commercial antibiotics against a gregarine parasite of Romalea microptera grasshoppers. Infected insects were fed daily, lettuce containing known amounts of specific antibiotics. On Days 15 or 20, we measured the number of gregarines remaining in the digestive tract of each grasshopper.

Results

Treatment with metronidazole and griseofulvin in host insects significantly reduced gregarine counts, whereas, gregarine counts of insects fed, albendazole, ampicillin, chloramphenicol, fumagillin, quinine, streptomycin, sulfadimethoxine, thiabendazole or tetracycline, were not significantly different from the controls. However, albendazole produced a strong, but non-significant reduction in gregarine count, and streptomycin exhibited a non-significant antagonistic trend.

Conclusion

Our results confirm that gregarine infections are difficult to control and suggest the possibility that streptomycin might aggravate gregarine infection. In addition, the insect system described here, provides a simple, inexpensive, and effective method for screening antibiotics.  相似文献   

3.
Microsporidia are obligate intracellular protozoa that have been shown to be pathogenic to most living creatures. The development of in vitro cell culture propagation methods has provided researchers with large numbers of spores and facilitated the study of these organisms. Here, we describe heterogeneity within cell culture-propagated Encephalitozoon intestinalis suspensions. Flow cytometer histograms depicting the log side scatter and forward-angle light scatter of spores from nine suspensions produced over 12 months consistently showed two populations differing in size. The suspensions were composed primarily of the smaller-spore subpopulation (76.4% +/- 5.1%). The presence of two subpopulations was confirmed by microscopic examination and image analysis (P < 0.001). Small subpopulation spores were noninfectious in rabbit kidney (RK13) cell culture infectivity assays, while the large spores were infectious when inocula included > or = 25 spores. The small spores stained brilliantly with fluorescein isothiocyanate-conjugated monoclonal antibody against Encephalitozoon genus spore wall antigen, while the large spores stained poorly. There was no difference in staining intensities using commercial (MicroSporFA) and experimental polyclonal antibodies. Vital-dye (DAPI [4',6'-diamidino-2-phenylindole], propidium iodide, or SYTOX Green) staining showed the spores of the small subpopulation to be permeable to all vital dyes tested, while spores of the large subpopulation were not permeable in the absence of ethanol pretreatment. PCR using primers directed to the 16S rRNA or beta-tubulin genes and subsequent sequence analysis confirmed both subpopulations as E. intestinalis. Our data suggest that existing cell culture propagation methods produce two types of spores differing in infectivity, and the presence of these noninfective spores in purified spore suspensions should be considered when designing disinfection and drug treatment studies.  相似文献   

4.
Pseudoloma neurophilia (Microsporidia) is the most common pathogen found in zebrafish Danio rerio research facilities. The parasite is associated with marked emaciation. Zebrafish laboratories usually disinfect eggs to prevent transmission of pathogens, typically with chlorine at 25 to 50 ppm for 10 min. The ability of chlorine to kill spores of P. neurophilia and 2 other microsporidia, Glugea anomala and Encephalitozoon cuniculi, was evaluated using 2 viability stains. SYTOX Green was used to visualize dead spores, and live spores were identified by their ability to extrude polar tubes in Fungi-Fluor solution following UV exposure. Results with both stains were similar at various chlorine concentrations for P. neurophilia and G. anomala, but Fungi-Fluor was not useful for E. cuniculi, due to the much smaller spore size. Using the SYTOX stain, we found that 5 ppm chlorine for 10 min causes 100% death in spores of E. cuniculi, which was similar to findings in other studies. In contrast, the spores of P. neurophilia and G. anomala were much more resistant to chlorine, requiring >100 or 1500 ppm chlorine, respectively, to achieve >95% spore death. Repeating chlorine exposures with spores of P. neurophilia using solutions adjusted to pH 7 increased the efficacy of 100 ppm chlorine, achieving >99% spore inactivation. We corroborated our viability staining results with experimental exposures of zebrafish fry, achieving heavy infections in fry at 5 to 7 d post-exposure in fish fed spores treated at 50 ppm (pH 9). Some fish still became infected with spores exposed to 100 ppm chlorine (pH 9.5). This study demonstrates that spores of certain fish microsporidia are highly resistant to chlorine, and indicates that the egg disinfection protocols presently used by most zebrafish research facilities will not prevent transmission of P. neurophilia to progeny.  相似文献   

5.
Morphological changes and synthesis of DNA, RNA, protein, and cell wall were investigated during germination of resting spores of Bacillus subtilis exposed transiently to the cyclic polypeptide antibiotics, polymyxin B and gramicidin S, and the aminoglycoside antibiotics, streptomycin, kanamycin, and gentamicin. Normal germinated spores showed breaks of the spore coat, a diminution in size and a fibrillar appearance of the cortex, a swelling core, a cell wall as thick as that of vegetable cells, some mesosomes and DNA fibrils. On the other hand, no breaks of the spore coat, a spore core with a slight swelling and irregular form, a thin cell wall, no demonstration of the nuclear material and no granularity in the cytoplasm were characteristic of the germinated spores derived from polymyxin B- and gramicidin S-treated resting spores. With gramicidin S-treated germinated spores a few vacuoles were formed in the cytoplasm. Both polymyxin B- and gramicidin S-treated germinated spores showed little or no synthesis of DNA, RNA, and protein. The vegetative cells derived from streptomycin-treated resting spores demonstrated several finely granular regions in the cytoplasm and a disorder of the fibrillar nucleoid, and their autolysis occurred early. Their DNA and RNA synthesis was normal, whereas protein synthesis was low. In spite of no occurrence of cell division and very low protein synthesis, the most striking characteristics of the outgrowing cells derived from kanamycin-treated resting spores were a markedly thickened cell wall and a continuous incorporation of labeled D-alanine suggesting cell wall synthesis; RNA synthesis was slightly lower and DNA synthesis was almost normal. The outgrowing cells from gentamicin-treated resting spores also revealed relatively thick cell walls and a very slight incorporation of labeled D-alanine. Their DNA and RNA synthesis was fairly low and protein synthesis was almost completely inhibited. These results coincide with the growth curves of individual antibiotic-treated resting spores.  相似文献   

6.
Li Z  Pan G  Li T  Huang W  Chen J  Geng L  Yang D  Wang L  Zhou Z 《Eukaryotic cell》2012,11(2):229-237
Microsporidia are a group of eukaryotic intracellular parasites that infect almost all vertebrates and invertebrates. The microsporidian invasion process involves the extrusion of a unique polar tube into host cells. Both the spore wall and the polar tube play an important role in microsporidian pathogenesis. So far, five spore wall proteins (SWP1, SWP2, Enp1, Enp2, and EcCDA) from Encephalitozoon intestinalis and Encephalitozoon cuniculi and five spore wall proteins (SWP32, SWP30, SWP26, SWP25, and NbSWP5) from the silkworm pathogen Nosema bombycis have been identified. Here we report the identification and characterization of a spore wall protein (SWP5) with a molecular mass of 20.3 kDa in N. bombycis. This protein has low sequence similarity to other eukaryotic proteins. Immunolocalization analysis showed SWP5 localized to the exospore and the region of the polar tube in mature spores. Immunoprecipitation, mass spectrometry, and immunofluorescence analyses revealed that SWP5 interacts with the polar tube proteins PTP2 and PTP3. Anti-SWP5 serum pretreatment of mature spores significantly decreased their polar tube extrusion rate. Taken together, our results show that SWP5 is a spore wall protein localized to the spore wall and that it interacts with the polar tube, may play an important role in supporting the structural integrity of the spore wall, and potentially modulates the course of infection of N. bombycis.  相似文献   

7.
ABSTRACT. Various doses of a microsporan parasite, Nosema sp., were fed to third and fourth instar larvae of Lesioderma sericorne that infested different types of stored grains. A spore dose of 3 × 103 spores/individual resulted in a 39% infection rate, reduction in larval and adult weights, and mean spore concentrations of 1.28 ± 0.2 × 108 spores/larva and 1.1 ± 0.2 × 108 spores/adult. At the above dose, mortality was not well marked (about 35% in larvae and 25% in adults). At 3 × 104 spores/individual, the rate of mortality increases to 80% in larvae and 60% in adults. However, more of the pest population (88% of larvae and 73% of adults) died at a dose of 3 × 105 spores/individual. This dose produced mean spore concentrations of 3.91 ± 0.2 × 108 spores/larva and 2.89 ± 0.2 × 108 spores/adult. Insect death was caused by heavy damage to gut epithelia and fat bodies.  相似文献   

8.
Effect of fumagillin on in vitro multiplication of Encephalitozoon cuniculi   总被引:6,自引:0,他引:6  
Encephalitozoon cuniculi (Levaditi, Nicolau & Schoen) is an obligate intracellular pathogenic parasite of rabbits, carnivores, laboratory rodents, and a variety of other mammals. Cell cultures of rabbit and canine cells were infected with rabbit and dog isolates of E. cuniculi. Four days later 5 microgram/ml of fumagillin was introduced into the culture medium. The multiplication of the parasite was inhibited within 48 h and this effect was maintained as long as the antibiotic remained in the medium. There was no effect when spores and proliferative forms of the parasite were incubated with fumagillin before being used for infecting host cells. No infection occurred, however, if the antibiotic was added to the culture medium before introduction of E. cuniculi. On electron-microscopic examination, the treated parasites were found to have severe cytoplasmic swelling, vesicular distortion of the plasma membrane, and marked reduction in cytoplasmic ribosomes. it was concluded that fumagillin blocks multipliation of E. cuniculi in vitro. The drug may be useful for the treatment or prevention of spontaneous encephalitozoonosis.  相似文献   

9.
Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.  相似文献   

10.
Microsporidia are obligate intracellular protozoa that have been shown to be pathogenic to most living creatures. The development of in vitro cell culture propagation methods has provided researchers with large numbers of spores and facilitated the study of these organisms. Here, we describe heterogeneity within cell culture-propagated Encephalitozoon intestinalis suspensions. Flow cytometer histograms depicting the log side scatter and forward-angle light scatter of spores from nine suspensions produced over 12 months consistently showed two populations differing in size. The suspensions were composed primarily of the smaller-spore subpopulation (76.4% ± 5.1%). The presence of two subpopulations was confirmed by microscopic examination and image analysis (P < 0.001). Small subpopulation spores were noninfectious in rabbit kidney (RK13) cell culture infectivity assays, while the large spores were infectious when inocula included ≥25 spores. The small spores stained brilliantly with fluorescein isothiocyanate-conjugated monoclonal antibody against Encephalitozoon genus spore wall antigen, while the large spores stained poorly. There was no difference in staining intensities using commercial (MicroSporFA) and experimental polyclonal antibodies. Vital-dye (DAPI [4′,6′-diamidino-2-phenylindole], propidium iodide, or SYTOX Green) staining showed the spores of the small subpopulation to be permeable to all vital dyes tested, while spores of the large subpopulation were not permeable in the absence of ethanol pretreatment. PCR using primers directed to the 16S rRNA or β-tubulin genes and subsequent sequence analysis confirmed both subpopulations as E. intestinalis. Our data suggest that existing cell culture propagation methods produce two types of spores differing in infectivity, and the presence of these noninfective spores in purified spore suspensions should be considered when designing disinfection and drug treatment studies.  相似文献   

11.
Microsporidia are obligate intracellular parasites forming environmentally resistant spores that harbour a rigid cell wall. This wall comprises an outer layer or exospore and a chitin-rich inner layer or endospore. So far, only a chitin deacetylase-like protein has been shown to localize to the Encephalitozoon cuniculi endospore and either one or two proteins have been clearly assigned to the exospore in two Encephalitozoon species: SWP1 in E. cuniculi, SWP1 and SWP2 in Encephalitozoon intestinalis. Here, we report the identification of two new spore wall proteins in E. cuniculi, EnP1 and EnP2, the genes of which are both located on chromosome I (ECU01_0820 and ECU01_1270, respectively) and have no known homologue. Detected by immunoscreening of an E. cuniculi cDNA library, enp1 is characterized by small-sized 5' and 3' untranslated regions and is highly expressed throughout the whole intracellular cycle. The encoded basic 40 kDa antigen displays a high proportion of cysteine residues, arguing for a significant role of disulfide bridges in spore wall assembly. EnP2 is a 22 kDa serine-rich protein that is predicted to be O-glycosylated and glycosylated phosphatidyl inositol-anchored. Although having been identified by mass spectrometry of a dithiothreitol-soluble fraction, this protein contains only two cysteine residues. Mouse polyclonal antibodies were raised against EnP1 and EnP2 recombinant proteins produced in Escherichia coli Our immunolocalisation data indicate that EnP1 and EnP2 are targeted to the cell surface as early as the onset of sporogony and are finally associated with the chitin-rich layer of the wall in mature spores.  相似文献   

12.
Microsporidia can form small spores with a unique invasive apparatus featuring a long polar tube whose extrusion allows entry of infectious sporoplasm into a host cell. The reactivity of mouse polyclonal antibodies raised against sporal proteins from two microsporidian species belonging to different genera ( Glugea atherinae and Encephalitozoon cuniculi ) was studied by western blotting and indirect immunofluorescence. Whole protein antisera provided a few cross-reactions relatable to some proteins of the spore envelope or polar tube. Ultrastructural immunocytochemistry with murine antibodies against protein bands separated by sodium dodecylsulphate polyacrylamide gel electrophoresis allowed the assignment of several proteins to the polar tube (34, 75 and 170 kDa in Glugea , 35, 55 and 150 kDa in Encephalitozoon ). Antigenic similarities were detected for the Glugea 34 kDa and Encephalitozoon 35 kDa polar tube proteins. Species-specific proteins were shown to be located in either the lamellar polaroplast of Glugea or the spore envelope of Encephalitozoon.  相似文献   

13.
Tecnazene (up to 33 ppm) and dichloran (up to 500 ppm) had little effect on germination of spores or growth of Fusarium solani isolated from and causing a rot of potato tubers; they also did not decrease rotting when applied to wounds later inoculated with the pathogen. Benomyl and thiabendazole (up to 500 ppm) also had little effect on spore germination but did greatly decrease growth at 5 ppm. A pronounced pink coloration developed in cultures growing slowly in the presence of benomyl; a similar though less striking effect appeared in agar cultures containing thiabendazole. Benomyl suspended in water or diluted with Fuller's earth gave good control of rotting when applied to wounds inoculated later with F. solani. Still better control was obtained with thiabendazole; dusts containing 1% a.i. substantially decreased rots and those containing 10 % a.i. gave almost complete control when applied to wounds shortly before inoculation. Thiabendazole was also very effective when used 24 h after inoculation and a fair measure of control was obtained when it was applied 24 h later. Benomyl and thiabendazole placed on apparently intact surfaces of tubers caused tissue 5 mm deep to become toxic to F. solani 10 days later, and, unexpectedly, this tissue prevented spore germination. Fuller's earth alone substantially decreased rotting. The results obtained suggest that dusts containing thiabendazole have some promise for the control of Fusarium rots of potato tubers, especially of early crops.  相似文献   

14.
The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID(50)) and a minimal infective dose (MID) for E. intestinalis. The TCID(50) is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID(50) have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25 degrees C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log(10) reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data suggest that chlorine treatment may be an effective water treatment for E. intestinalis and that spectrophotometric methods may be substituted for labor-intensive hemacytometer methods when spores are counted in laboratory-based chlorine disinfection studies.  相似文献   

15.
We have previously shown that Escherichia coli BJ4 has similar doubling time in mice that are mono-associated (having only the inoculated E. coli BJ4) or streptomycin-treated (having mainly gram-positive bacteria plus the inoculated E. coli BJ4). We also showed that when the mice were conventionalized (fed cecum homogenate from conventional mice or ones with a complete microbial flora), the introduction of complete flora in both cases increased the in vivo doubling time, while decreasing the colony counts in fecal samples. To determine whether the increase in doubling time could explain the decrease in colony counts, we analyzed our previous results by a chemostat model. The analysis shows that the increasing doubling time alone is sufficient to explain the decrease in colony counts in mono-associated mice, but not in the streptomycin-treated mice. The observed decreasing rate in colony counts in streptomycin-treated mice is slower than predicted. Furthermore, whereas the model predicted a decrease to extinction in both mice, the E. coli persist at a frequency 10-80 times higher in streptomycin-treated mice than in mono-associated mice. Thus, while a chemostat model is able to explain some of the population dynamics of intestinal bacteria in mice, additional factors not included in the model are stabilizing the system. Because we find that E. coli declines more slowly and to a higher stabilization frequency in streptomycin-treated mice, which have a more diverse flora before conventionalization, we take these results to suggest that the persistence of E. coli populations is promoted by species diversity. We propose that a mechanism for the persistence may be the presence of new E. coli niches created by keystone species in the more diverse flora.  相似文献   

16.
Fumagillin is a potent anti-angiogenic drug used in cancer treatments. It is also one of the few molecules active against the Enterocytozoon and Encephalitozoon parasites responsible for various clinical syndromes in HIV-infected or immunosuppressive treated patients. Its toxicity, however, makes desirable the design of more specific molecules. The fumagillin target, as anti-angiogenic agent, is the methionine aminopeptidase, an ubiquitous metallo-enzyme responsible for the removing of the N-terminal methionine in nascent proteins. By analogy, it has been proposed that this enzyme could also be the target in the parasites. As a first approach to verify this and to determine if it would be possible to design a more specific derivative, we have built a homology model of the E. cuniculi aminopeptidase. The charges of the two cobalt ions present in the active site and of the side-chains involved in their binding were computed using ab-initio methods. A preliminary comparison of the interactions of the fumagillin and of a related compound, the TNP-470, with both the human and the parasitic enzymes strongly support the hypothesis that the parasitic aminopeptidase is indeed the target of the fumagillin. It also suggests that the TNP-470 interact identically with both enzymes while there could be small differences in case of the fumagillin.  相似文献   

17.
Clostridium difficile is a major nosocomial pathogen whose infections are difficult to treat because of their frequent recurrence. The spores of C. difficile are responsible for these clinical features, as they resist common disinfectants and antibiotic treatment. Although spores are the major transmissive form of C. difficile, little is known about their composition or morphogenesis. Spore morphogenesis has been well characterized for Bacillus sp., but Bacillus sp. spore coat proteins are poorly conserved in Clostridium sp. Of the known spore morphogenetic proteins in Bacillus subtilis, SpoIVA is one of the mostly highly conserved in the Bacilli and the Clostridia. Using genetic analyses, we demonstrate that SpoIVA is required for proper spore morphogenesis in C. difficile. In particular, a spoIVA mutant exhibits defects in spore coat localization but not cortex formation. Our study also identifies SipL, a previously uncharacterized protein found in proteomic studies of C. difficile spores, as another critical spore morphogenetic protein, since a sipL mutant phenocopies a spoIVA mutant. Biochemical analyses and mutational analyses indicate that SpoIVA and SipL directly interact. This interaction depends on the Walker A ATP binding motif of SpoIVA and the LysM domain of SipL. Collectively, these results provide the first insights into spore morphogenesis in C. difficile.  相似文献   

18.
Abstract:  In this study, the bacterial flora of Hyphantria cunea Drury. (Lep., Arctiidae) were investigated during three hazelnut seasons from 1998 to 2000. Four different bacteria were found in dead and living larvae. They were isolated and identified as Bacillus thuringiensis , Escherichia freundii , Micrococcus sp. and Streptococcus sp. Laboratory experiments carried out to determine the insecticidal activities of these isolates showed that E. freundii and Micrococcus sp. did not have any insecticidal effect on second – third instar larvae of H. cunea . However, B. thuringiensis and Streptococcus sp. had 56 and 38% effects, respectively. Crystals and spores from B. thuringiensis were also purified and the crystals, spores and crystals–spore mixture were tested separately against the larvae of H. cunea . It was found that the insecticidal activities of the crystals, spores and crystal–spore mixture were 37.5, 25 and 62.5%, respectively, on second – third instar larvae of H. cunea . These results indicate that the crystal–spore mixture has 6.5% more insecticidal effect than that of the vegetative cells of the B. thuringiensis isolate.  相似文献   

19.
This study was carried out over a 2-year period (2001 and 2002) with the aim of identifying the fungal population in the aerosol of the Southern city of Caxias do Sul, RS, Brazil. Sampling was performed using Hirstȁ9s non-viable volumetric method. Our results show the presence of a large number of fungal spore types, a total of 41. Three groups were predominant: Deuteromycotina, Ascomycotina and Basidiomycotina. In 2001, Deuteromycotina taxa represented 44.61% of the total annual spore counts, with the largest concentration occurring in the fall (58,637 spores); in 2002, it represented 40.03% of the total annual spore counts, and the largest concentration was obtained in the summer (68,317 spores). Ascomycotina was present at the same level (24.5%) in both years of sampling, and the highest concentrations were found out in the summer (2001: 42,183 spores; 2002: 29,461 spores). Basidiomycotina represented 22.37% of the total annual spore counts in 2001, and 20.41% in 2002, with the largest concentrations found in the summer (2001: 35,988 spores; 2002: 30,212 spores). The most frequent fungi found during the study period were Cladosporium, Coprinus, Leptosphaeria, Aspergillus/Penicillium and Ganoderma. Permanent aerobiological monitoring would be necessary to detect associated environmental variations.  相似文献   

20.
Bioassay studies were conducted to investigate the influence of Dimilin (diflubenzuron), a chitinsynthetase inhibitor used for insecticidal control of the gypsy moth, Lymantria dispar, on the development and viability of a microsporidian pathogen of L. dispar. Before or after an infection with a Nosema species, L. dispar larvae were fed Dimilin in sublethal dosages. Dimilin fed to L. dispar larvae at 0.65 ng/cm2 diet surface resulted in a total larval mortality of 53%. Although the microsporidian infection alone did not cause high mortality rates (9%), mortality increased to 96% when L. dispar larvae were inoculated with both Dimilin and Nosema spores. When Dimilin was fed to the larvae 24 h before or 6 days after inoculation with the microsporidium, the number of mature spores produced was significantly reduced. When Dimilin was fed to the larvae 24 h after microsporidian inoculation, the number of spores produced was not significantly reduced. Spores that were produced in larvae after Dimilin had been ingested with the diet were less infectious than spores produced in control larvae; the experimental infection rate decreased from 94% when spores obtained from control larvae were used, to 48 or 10% when spores obtained from larvae fed Dimilin 24 h or 6 days after Nosema inoculation, respectively, were used. Mature microsporidian spores washed in Dimilin solution prior to oral inoculation, however, were as infectious as spores stored in liquid nitrogen. We have shown that Dimilin interferes with the establishment of the parasite in its host. In addition, when Nosema sp. succeeds in infecting the L. dispar host despite treatment with Dimilin, the microsporidium does not develop optimally and spore production is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号