首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine whether the cholinergic system might have a regulatory role on vasoactive intestinal peptide (VIP) synthesis and release in the rat hippocampus and frontal cortex. Incubation of hippocampal or frontal cortical slices with the muscarinic agonist oxotremorine or antagonist atropine did not significantly alter VIP release. The nicotinic agonist methylcarbamylcholine (MCC) and the nicotinic antagonist dihydro-beta-erythroidine were also ineffective in altering VIP release. Chronic atropine (20 mg/kg, s.c., b.i.d., 10 days) and nicotine (0.59 mg/kg, s.c., b.i.d., 10 days) treatment significantly decreased the VIP content of the frontal cortex, by 42% and 26%, respectively. In contrast, neither treatment significantly altered the VIP content of the hippocampus. Both drug treatments decreased the amount of VIP released from tissue slices depolarized with veratridine in both cerebral cortex and hippocampus. Therefore, long-term treatment with atropine and nicotine results in changes in the synthesis and release of VIP in the cerebral cortex, whereas in the hippocampus the effect is limited to an alteration of VIP release. These results suggest that the acetylcholine regulates VIP neurotransmission in the rat frontal cortex and hippocampus by an action on muscarinic and nicotinic receptors.  相似文献   

2.
Vasoactive intestinal peptide (VIP) receptors have been identified in CNS by their chemical specificity and molecular size. Using synaptosomes isolated from rat cerebral cortex, it was shown that central VIP receptors discriminated among natural and synthetic VIP-related peptides, because half-maximal inhibition of [125I]VIP binding to synaptosomes was obtained for 0.6 nM VIP, 9 nM peptide histidine isoleucineamide (PHI), 50 nM VIP 2-28, 70 nM secretin, 100 nM rat growth hormone-releasing factor (GRF), and 350 nM human GRF. Other peptides of the VIP family, such as glucagon and gastric inhibitory polypeptide, did not interact with cortical VIP receptors. The molecular components of VIP receptors in rat cerebral cortex were identified after [125I]VIP cross-linking to synaptosomes using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of synaptosomal proteins revealed two major [125I]VIP-protein complexes of Mr 49,000 and 18,000. The labeling of the Mr 49,000 component was specific, because it was abolished by native VIP, whereas the labeling of the Mr 18,000 component was not. Natural VIP agonists reduced the labeling of the Mr 49,000 component with the following order of potency: VIP greater than PHI greater than secretin approximately equal to rat GRF. In contrast, glucagon and octapeptide of cholecystokinin were without effect, a result indicating its peptide specificity. Densitometric scanning of autoradiographs showed that the labeling of the Mr 49,000 component was inhibited by low VIP concentrations between 10(-10) and 10(-6) M (IC50 = 0.8 nM), a result indicating the component's high affinity for VIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of long-term treatment with atropine, a muscarinic antagonist, known to cause up-regulation of receptor numbers, was examined on the muscarinic-receptor-mediated stimulation of phosphoinositide breakdown in the rat cerebral cortex and hippocampus. Although the numbers of both M1 muscarinic receptors, as measured by [3H]pirenzepine binding, and M1 and M2 receptors increased in both brain regions, the maximal breakdown of myo-[3H]inositol-labelled phosphoinositides was unaltered in the presence of carbachol at a saturating concentration (10(-2) M). In fact the efficacy of carbachol was decreased in slices from atropine-treated cerebral cortex [EC50 (concentration producing half-maximal effect) = 93 microM] as compared with the saline-treated control (EC50 = 23 microM)(P less than 0.005). Similarly the EC50 value (23 microM) in hippocampal slices from saline-treated rats increased in atropine-treated rats to 126 microM (P less than 0.005). This lowered efficacy of muscarinic stimulation could not be explained in terms of residual atropine in the tissue from treated rats. The noradrenaline- or serotonin (5-hydroxytryptamine)-stimulated breakdown or the K+ potentiation of the muscarinic-receptor-stimulated breakdown of [3H]phosphoinositides was not affected by the atropine treatment. Chromatography of the released [3H]inositol phosphates shows that atropine treatment did not cause any qualitative change in the pattern of [3H]inositol phosphates released by carbachol stimulation.  相似文献   

4.
Chemical modification of muscarinic M1 receptors in a synaptoneurosomal preparation of rat cerebral cortex by a hydrophilic histidyl-group-specific reagent, diethylpyrocarbonate (DEP), reduces the number of [3H]-4NMPB binding sites in a dose-dependent way. The effect can be reversed by hydroxylamine treatment. No such effect is observed when carbethoxylation with 2.5 mM DEP is carried out in the presence of atropine, 4NMPB, pirenzepine or carbachol. These findings indicate that DEP specifically modifies histidyl residue(s) positioned at the binding site in members of the M1 receptor family. However, treatment with 2.5 mM DEP in the presence of various muscarinic ligands significantly disturbs the binding state of agonists. The results suggest that M1 receptors may have more than one histidyl residue of importance in ligand binding.  相似文献   

5.
Basal and vasoactive intestinal peptide (VIP)-stimulated accumulations of cyclic AMP were measured in slices of rat cerebral cortex. Neither gamma-aminobutyric acid (GABA) nor the selective GABAB receptor agonist (-)-baclofen stimulated basal cyclic AMP accumulation, whereas VIP caused a large dose-dependent increase in cyclic AMP levels. However, in the presence of 100 microM (-)-baclofen, the effects of VIP on cyclic AMP accumulation were significantly enhanced, with the responses to 1 microM and 10 microM VIP being approximately doubled. The enhancing effects of (-)-baclofen was dose related (1-1,000 microM), but an enhancing effect was not observed with 100 microM (+)-baclofen. In the presence of the GABA uptake inhibitor nipecotic acid (1 mM), GABA caused a similar dose-related enhancement of the VIP response. The ability of either GABA or (-)-baclofen to augment VIP-stimulated production of cyclic AMP was not mimicked by the GABAA, agonists isoguvacine and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and was not antagonized by the GABAA antagonist bicuculline. The putative GABAB antagonist 5-aminovaleric acid (1 mM) significantly reduced the effect of (-)-baclofen. The ability of (-)-baclofen to enhance VIP-stimulated accumulation of cyclic AMP was observed in slices of rat cerebral cortex, hippocampus, and hypothalamus. These results indicate that GABA and (-)-baclofen can enhance VIP-stimulated accumulation of cyclic AMP in rat brain slices via an interaction with specific GABAB receptors.  相似文献   

6.
Vasoactive intestinal polypeptide (VIP), a 28 amino acid peptide hormone, plays many physiological roles in the peripheral and central nerve systems. A functional cDNA clone of the VIP receptor was isolated from a rat lung cDNA library by cross-hybridization with the secretin receptor cDNA. VIP bound the cloned VIP receptor expressed in mouse COP cells and stimulated adenylate cyclase through the cloned receptor. The rat VIP receptor consists of 459 amino acids with a calculated Mr of 52,054 and contains seven transmembrane segments. It is structurally related to the secretin, calcitonin, and parathyroid hormone receptors, suggesting that they constitute a new subfamily of the Gs protein-coupled receptors. VIP receptor mRNA was detected in various rat tissues including liver, lung, intestines, and brain. In situ hybridization revealed that VIP receptor mRNA is widely distributed in neuronal cells of the adult rat brain, with a relatively high expression in the cerebral cortex and hippocampus.  相似文献   

7.
Chemical modification of muscarinic receptors of rat cerebral cortex, brain stem and atria by a carboxyl-group-specific reagent, namely trimethyloxonium ion (TMO+) reduces the number of tritium-labeled antagonist- and agonist-binding sites in a dose-dependent way. No such effect is observed when modification is carried out in the presence of atropine, oxotremorine or carbamylcholine. These findings suggest that TMO+ specifically methylates the carboxyl residue(s) positioned at the binding site in members of the M1 and M2 receptor family.  相似文献   

8.
Vertongen, P., S. N. Schiffmann, P. Gourlet and P. Robberecht. Autoradiographic visualization of the receptor subclasses for Vasoactive Intestinal Polypeptide (VIP) in rat brain. Peptides 18(10) 1547–1554, 1997.—Vasoactive Intestinal Polypeptide (VIP) exerts its biological effects through interaction with two high affinity receptors named the VIP1- and the VIP2 receptors. Their messenger RNAs have been mapped in rat brain by in situ hybridization. A cyclic peptide (RO 25-1553) and a secretin analogue ([R16]chicken secretin) were identified as selective agonist peptides for the VIP2- and VIP1 receptors, respectively. The iodinated peptides retained the high affinity and selectivity of the unlabelled peptides and were used for the mapping of each receptor subclass in rat brain. VIP1 receptors were present in the cerebral cortex, the piriform cortex, the claustrum, the caudate-putamen, the dentate gyrus, the lateral amygdaloïd nucleus, the anteroventral thalamic nucleus, the rhomboïd nucleus, the supraoptic nucleus and the choroïd plexus. VIP2 receptors were present in the cerebral cortex, the claustrum, the caudate-putamen, the nucleus accumbens, the lateral septal nuclei, the bed nucleus of the stria terminalis, the basolateral amygdaloïd nucleus, the Ammon’s horn, the thalamic nuclei except some centromedial nuclei, the medial habenula, the suprachiasmatic nucleus, the periventricular nucleus, the mammilary nucleus, the superior colliculus and the choroïd plexus.  相似文献   

9.
Vasoactive intestinal polypeptide (VIP) is implicated in the modulation of vagal effects on the heart rate. In this study, the impact of acute and chronic atropine administration on VIP levels in rat heart atria was investigated in relation to heart rate in the course of vagus nerves stimulation. Anaesthetised control and atropinised (10 mg/kg/day for 10 days) rats pretreated with metipranolol and phentolamine that were either given or not a single dose of atropine were subjected to bilateral vagus nerve stimulation (30 min: 0.7 mA, 20 Hz, 0.2 ms). VIP concentrations in the atria were determined after each stimulation protocol. In control rats with or without single atropine administration, the heart rate upon vagal stimulation was higher than in atropinised animals with or without single atropine dose, respectively. VIP concentrations in the control atria were significantly decreased after the stimulation; the decrease was comparable both in the absence and presence of a single dose of atropine. Compared to controls, VIP levels were significantly decreased after chronic atropine treatment and they were not further reduced by vagal stimulation and single atropine administration. Administration of VIP antagonist completely abolished the differences in the heart rate upon vagal stimulation between control and atropinised groups. In conclusion, the data indicate that chronic atropine administration affects VIP synthesis in rat heart atria and consequently it modifies the heart rate regulation.  相似文献   

10.
The nucleotide sequence analysis of cloned cDNA for VIP precursor from rat cerebral cortex reveals that the precursor contains both rat VIP and PHI-27. The deduced primary structure of rat VIP is identical with human VIP. The amino acid sequence of rat PHI-27 differs by 4 amino acids from human PHM-27. When each VIP precursor is divided functionally into 6 domains, the amino acid sequence homology between rat and human precursors ranges from 69 to 100%. In contrast, any domain exhibits an essentially equal degree of nucleotide sequence homology.  相似文献   

11.
Apamin is a neurotoxic octadecapeptide from bee venom, which has been shown to inhibit the non-adrenergic, non-cholinergic inhibitory innervation of the smooth muscle of the gut. Since vasoactive intestinal polypeptide (VIP) has been proposed as a possible inhibitory neurotransmitter, the effect of apamin on the receptor binding of 125I-VIP was studied using the following assays: (1) isolated synaptosomes from rat cerebral cortex, (2) crude plasma membranes from hog uterine smooth muscle, and (3) purified plasma membranes and isolated hepatocytes from hog liver. Apamin inhibited the receptor-bound 125I-VIP on membranes from brain or myometrium, although the binding affinity was 100-1000 times lower than for VIP. The displacement curves for VIP and apamin were parallel suggesting that apamin interacts with both the low and high affinity VIP receptors. In membranes and cells from liver, apamin was unable to displace receptor-bound 125I-VIP in concentrations up to 50 mumol/l. The findings suggest that the VIP receptors in liver are different from those in the brain cortex and myometrium.  相似文献   

12.
M M Shaffer  T W Moody 《Peptides》1986,7(2):283-288
Receptors for VIP were characterized in the rat CNS. 125I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific 125I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.  相似文献   

13.
The M2-cholinoceptor subtype selective antagonist AF-DX 116 was compared with atropine with respect to effects on heart rate and salivary flow in healthy volunteers. These effects were related with in vitro occupancy of M-cholinoceptor subtypes in radioreceptor assays of plasma samples. Radioreceptor assays comprised M1-cholinoceptors in bovine cerebral cortex and M2-cholinoceptors in pig heart and rat salivary gland membranes. 3H-pirenzepine served as a label in the cerebral cortex 3H-N-methyl-scopolamine in the heart and gland preparations. Oral administration of 240 mg AF-DX 116 led to a time dependent increase in heart rate with a maximum effect comparable to atropine 40 micrograms/kg i.v. The effects of both drugs on heart rate were matched by a greater than 80% occupancy of heart M2-cholinoceptors in the radioreceptor assay of plasma samples. In contrast to the complete inhibition of salivary flow after atropine, AF-DX 116 induced an increase of salivation. The effects on salivary flow coincided with a greater than 80% occupancy of glandular M2-cholinoceptors after atropine but no detectable occupancy after AF-DX 116. Occupancy of the M1-subtype amounted to 61.7% after AF-DX 116 and a blockade of inhibitory, presynaptic M1-autoreceptors at missing postsynaptic blockade of glandular M2-cholinoceptors might explain the hypersalivation induced by AF-DX 116.  相似文献   

14.
Abstract: Adenylate cyclase in microvessels isolated from rat cerebral cortex was stimulated by guanine nucleotides, catecholamines, prostaglandin E1, prostaglandin E2, and 2-chloroadenosine. Catecholamine stimulation was mediated by interaction with β-adrenergic receptors. The order of relative potency was: isoproterenol > epinephrine > norepinephrine. Activation of microvessel adenylate cyclase by prostaglandins E1 and E2 as well as by 2-chloroadenosine was dose related. Twenty-two peptides were tested for possible effects on the microvessel adenylate cyclase. Only vasoactive intestinal polypeptide (VIP) was stimulatory. No inhibitory action was observed. Activation by VIP required guanosine triphosphate and was dose dependent from 10 n M to μ M (ED50= 0.1 μ M ). At 30°C, stimulation of adenylate cyclase by the peptide increased linearly with time for up to 15 min. The effect of VIP was not inhibited by phentolamine or propranolol, suggesting that its action was not elicited by interaction with α- or β-adrenergic receptors. Activation achieved by VIP and isoproterenol, prostaglandin E1, or 2-chloroadenosine was the sum of the individual stimulations, suggesting that receptors for VIP were distinct from those for isoproterenol, prostaglandin E1, and 2-chloroadenosine.  相似文献   

15.
Expression of hippocalcin and neural visinin-like calcium-binding protein 2 (NVP2) in aging rat brain was investigated by immunoblot and immunohistochemical analyses. In 3-month old rats, hippocalcin and NVP2 were present at high concentrations in hippocampal and cerebral pyramidal cells and dentate granule cells, with hippocalcin protein levels being five to ten times higher than NVP2 levels. Hippocalcin levels in hippocampus and cerebral cortex decreased by approximately 20% at 24 months. While the number of hippocalcin-positive cells in CA3, dentate gyrus and cerebral cortex were preserved, staining intensity decreased. In contrast, the number and staining intensity of hippocalcin-positive cells in CA1 were maintained. NVP2 levels in hippocampus and cerebral cortex decreased by approximately 30% at 24 months. In cerebral cortex, the number and intensity of NVP2-positive cells decreased. In CA1 through CA3 and in dentate gyrus, NVP2-positive cell numbers were preserved, but staining intensity decreased. In summary, the loss of hippocalcin and NVP2 in aging rat brain may be associated with age-related impairment of postsynaptic functions.  相似文献   

16.
Abstract: Vasoactive intestinal polypeptide (VIP) is a neuropeptide that causes neurone excitation in the brain cortex. VIP receptors were studied in subcellular fractions isolated from rat cerebral cortex. The receptor binding of 125I-VIP was greatest in the synaptosomal fraction at membrane protein concentrations of 50–100 μg/ml, a temperature of 37°C, and a pH from 7.4 to 7.7. Under these conditions the concomitant proteolytic degradation of 125I-VIP was approximately 10% after 60 min of incubation. The binding of 60 pmoI/L 125I-VIP reached steady-state after 60 min and was maintained up to 240 min. At steady-state, the receptor-bound 125I-VIP was displaced by unlabelled VIP with half-maximal inhibition (IC50) at a concentration of approximately 3 nmol/L. The binding of 125I-VIP in the concentration range of 10 pmol/L to 6 nmol/L was superimposable on the VIP displacement curve. The Scatchard plot was curvilinear with upward concavity, which can be interpreted to represent two classes of receptors with KD of 2.5 and 125 nmol/L, one class of receptors with negative cooperative interactions, or heterogeneity of the 125I- VIP preparation. The total amount of receptors was 9.5 pmol/mg of membrane protein. Secretin displaced receptor-bound 125I-VIP with an IC50 of 0.3 μmol/L, whereas glucagon snowed no inhibition up to 1 μmol/L. The dissociation of receptor-bound 125I-VIP was biexponential with rate constants (k2) of 4.1 – 10?3 and 0.18 min?1 corresponding to half-times of approximately 170 and 4 min, respectively. The size of the two components was dependent on the duration of the 125I-VIP association period. Initially, both components increased; at steady-state, the rapid component declined, whereas the slow component increased to approximately 70% after 120 min. The association rate constants (k1) were estimated from the initial velocities as 106 and 4. 106 L. mol?1. min?1, and a calculation of the KD as k2/k1 gave values of 4.1 and 45 nmol/L, respectively. In conclusion, the presence of receptors for VIP on synaptosomes from the cerebral cortex supports the role of VIP as a neurotransmitter in the brain. The receptor binding was heterogeneous, suggesting the presence of two classes of receptors. The binding kinetics showed a time-dependent transition of VIP receptors from a low- to a high-affinity state, which may be interpreted as desensitisation of synapses to the action of VIP.  相似文献   

17.
In order to develop potent shortened analogues of vasoactive intestinal peptide (VIP), the structure-activity relationship of C-terminally truncated analogues of VIP was investigated by examining the binding activity to rat lung VIP receptors and relaxation of smooth muscle in isolated mouse stomach. VIP(1-27) showed VIP receptor binding activity comparable to that of VIP but the activity of VIP(1-26) was reduced to one-third of VIP. The receptor binding activity of VIP(1-26) to VIP(1-23) was reduced in proportion to the decrease in amino acid residues. There was a significant correlation between the number of amino acid residues and VIP receptor binding activities of VIP and its C-terminally truncated analogues. VIP(1-22) and VIP(1-21) exhibited little binding activity even at high concentrations, suggesting the requisite of 23 amino acid residues as the minimal essential sequence for the conservation of VIP receptor binding activity. The chemical modification of VIP(1-23) generated a potent analogue, [Arg(15, 20, 21), Leu(17)]-VIP(1-23), that displayed a 22-fold higher receptor binding activity and 1.6-fold more potent relaxation of mouse stomach than VIP(1-23) did. In conclusion, it was shown that [Arg(15, 20, 21), Leu(17)]-VIP(1-23) could be a relatively potent and stable agonist of VIP receptors. The present study has provided further insight into the structure-activity relationship of VIP to generate novel shortened VIP analogues having a high affinity to VIP receptors and potent pharmacological activity.  相似文献   

18.
In synaptosomes prepared from rat cerebral cortex, free cytosolic calcium concentration ([Ca2+]i) was measured using the fluorescent dye fura-2. Incubation of fura-2-loaded synaptosomes with carbachol increased [Ca2+]i in a dose-dependent manner (1-1,000 microM), with a maximum response of 22 +/- 2% at approximately 100 microM and an EC50 (calculated concentration producing 50% of the maximum response) of 30 microM. The effect of carbachol (100 microM) on [Ca2+]i was antagonised by atropine, but not by hexamethonium (10 microM). The calculated concentration of atropine needed for 50% inhibition (IC50) was 260 nM. The rise in [Ca2+]i produced by carbachol was reduced in the absence of extrasynaptosomal Ca2+ and effectively blocked by the L-type calcium channel blocker nifedipine (with an IC50 of 29 nM). The response to carbachol was reduced if the synaptosomes were preincubated with the protein kinase inhibitors H7 [1-(5-isoquinolinylsulfonyl)-2- methylpiperazine] (from 17% in the solvent control to 4%) and staurosporine (from 20% in the solvent control to 3%). These results show that stimulation of muscarinic acetylcholine receptors in synaptosomes increases [Ca2+]i by protein kinase-dependent activation of 1,4-dihydropyridine-sensitive calcium channels.  相似文献   

19.
The effect of galanin on noradrenaline (NA)-induced accumulation of cyclic AMP was investigated in slices of rat cerebral cortex. NA (10(-4)M) increased cyclic AMP levels during a 20-min observation period. Galanin (3 X 10(-7)M) significantly inhibited this response at all time points examined, although it did not change the basal levels of cyclic AMP. Galanin (10(-8)-3 X 10(-6)M) inhibited the cyclic AMP response to NA (10(-4)M) in a dose-dependent manner, with an IC50 of approximately 5.6 X 10(-8)M and a maximum inhibition of 59%. These results suggest that galanin, devoid of any detectable effects by itself, modulates the cyclic AMP response to NA in the rat cerebral cortex.  相似文献   

20.
The colocalization of vasoactive intestinal polypeptide (VIP) with the cholinergic specific surface antigen Chol-1 was investigated in synaptosomes derived from the rat cerebral cortex. Immunoaffinity purification of cortical synaptosomes using antisera to Chol-1 resulted in the copurification of VIP and cholinergic nerve terminals. VIP was purified with a yield of 75% of that of choline acetyltransferase (ChAT). These results suggest that approximately 53% of the cortical cholinergic terminals contain VIP, whereas 75% of the cortical VIP content is present in these cholinergic terminals. Both hypotonic lysis and depolarization of the nerve terminals resulted in the differential release of VIP and acetylcholine (ACh), indicating the different compartmentalization in the same nerve terminal. Complement-mediated lysis of cholinergic nerve terminals, using antisera to Chol-1, resulted in the release of 64% of the ChAT, 71% of ACh, and 27% of the VIP. The application of our method enables quantifying and mapping, with a fast, efficient, and specific technique, the coexisting peptides in cholinergic neurons of distinct brain areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号