首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell volume of Halomonas elongata was determined at different salt concentrations in cells adapted to these salinities for many generations. There is an inverse relationship between cell volume and salinity. In contrast, the initial response to salinity changes was to adapt the cell composition to return to the pre-shock volume. Therefore, long- and short-term response to salinity change is different in this salt tolerant bacterium. The cell volume was recovered more quickly after a salinity increase from 0.35 to 1.37 mol1-1 NaCl (6 h) than after a salinity decrease from 1.37 to 0.35 mol1-1 NaCl (between 8 and 24 h).  相似文献   

2.
Both mannitol and sucrose (Suc) are primary photosynthetic products in celery (Apium graveolens L.). In other biological systems mannitol has been shown to serve as a compatible solute or osmoprotectant involved in stress tolerance. Although mannitol, like Suc, is translocated and serves as a reserve carbohydrate in celery, its role in stress tolerance has yet to be resolved. Mature celery plants exposed to low (25 mM NaCl), intermediate (100 mM NaCl), and high (300 mM NaCl) salinities displayed substantial salt tolerance. Shoot fresh weight was increased at low NaCl concentrations when compared with controls, and growth continued, although at slower rates, even after prolonged exposure to high salinities. Gas-exchange analyses showed that low NaCl levels had little or no effect on photosynthetic carbon assimilation (A), but at intermediate levels decreases in stomatal conductance limited A, and at the highest NaCl levels carboxylation capacity (as measured by analyses of the CO2 assimilation response to changing internal CO2 partial pressures) and electron transport (as indicated by fluorescence measurements) were the apparent prevailing limits to A. Increasing salinities up to 300 mM, however, increased mannitol accumulation and decreased Suc and starch pools in leaf tissues, e.g. the ratio of mannitol to Suc increased almost 10-fold. These changes were due in part to shifts in photosynthetic carbon partitioning (as measured by 14C labeling) from Suc into mannitol. Salt treatments increased the activity of mannose-6-phosphate reductase (M6PR), a key enzyme in mannitol biosynthesis, 6-fold in young leaves and 2-fold in fully expanded, mature leaves, but increases in M6PR protein were not apparent in the older leaves. Mannitol biosynthetic capacity (as measured by labeling rates) was maintained despite salt treatment, and relative partitioning into mannitol consequently increased despite decreased photosynthetic capacity. The results support a suggested role for mannitol accumulation in adaptation to and tolerance of salinity stress.  相似文献   

3.
Incorporation of [methyl-3H]thymidine was measured in solar saltern ponds of different salinities. Estimated doubling times of the bacterial communities were in the range of 1.1 to 22.6 days. Even at the highest salt concentrations (NaCl saturation), relatively rapid thymidine incorporation was observed. In an attempt to differentiate between activity of halophilic archaeobacteria (theHalobacterium group) and halophilic eubacteria, taurocholate, which causes lysis of the halobacteria without affecting eubacteria, was used. At salt concentrations exceeding 250 g/liter all thymidine incorporation activity could be attributed to halobacteria. Aphidicolin, a potent inhibitor of DNA synthesis in halobacteria, completely abolished thymidine incorporation at the highest salinities, but also caused significant inhibition at salinities at which halobacteria are expected to be absent. Attempts to use nalidixic acid to selectively inhibit DNA synthesis by the eubacterial communities were unsuccessful.  相似文献   

4.
大麦种子对盐的发芽响应模型   总被引:1,自引:0,他引:1       下载免费PDF全文
为了明确盐对种子发芽影响的渗透效应和离子效应共同作用方式以及量化种子发芽对盐的响应, 以两个大麦(Hordeum vulgare)品种‘Cask’和‘County’为研究对象, 设置4个恒定温度(5、12、20和27 ℃)、5个等渗的NaCl和聚乙二醇(PEG)浓度梯度(-0.45、-0.88、-1.32、-1.76和-2.20 MPa, 蒸馏水作对照), 做常规发芽实验。结果显示: (1)两个品种在NaCl溶液中比在等渗的PEG溶液中发芽率高且发芽速度快; (2) NaCl和PEG分别作为渗透剂计算出的水势模型参数值差异很大, 说明水势模型不能用来描述种子发芽对盐的响应; (3)大麦种子在盐溶液中的发芽速率与盐浓度成显著的负相关直线关系, 因此我们修订了水势模型, 将修订后的模型命名为盐度模型, 用来量化盐对大麦种子发芽的影响。与水势模型计算出的发芽时间相比, 盐度模型计算出的50%种子发芽时间与大麦种子实际发芽时间更接近; (4)大麦种子在等渗的NaCl和PEG溶液中发芽速率差异随着水势降低, 先增加后降低。据此我们提出盐的渗透效应和离子效应共同作用于种子发芽的3种情况: 第一种在低盐条件下, 主要是渗透效应起负作用; 第二种情况在中盐条件下, 渗透效应和离子效应共同起作用, 离子效用的正作用强于渗透效应的负作用; 第三种情况在高盐条件下, 离子效应逐渐开始起离子毒害的负作用。  相似文献   

5.
The extremely halotolerant green alga, Dunaliella parva, tolerates salt concentrations from 0.3 to 3.0 M NaCl. Effects of long-term adaptation to five distinct salinities were analyzed. Salt-dependent differences of physiological parameters such as growth rate, pigments, quantitative protein contents, and gas exchange were measured; furthermore the qualitative protein composition in salt-adapted cells was investigated using SDS-polyacrylamide gel electrophoresis. Proteins of apparent molecular masses of 26, 35, 39, 50, and 63 kDa were induced or intensified with an increase in external sodium chloride concentration whereas proteins of 85 and 101 kDa were diminished in high salt algae. After selective staining, four modifications of glycoproteins were observed. A glycoprotein of 96 kDa was produced exclusively in low salt cells whereas glycosylations of 105, 135, and 260 kDa were induced by high salt concentrations.  相似文献   

6.
7.
The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long evolutionary history in soil, and support the idea that identical morphospecies may differ considerably with respect to physiology  相似文献   

8.
Alpha-spores of the intertidal Porphyra schizophylla Hollenberg f. norrisii Mumford appear able to tolerate environmental stress factors associated with intertidal habitats, (viz., drying of water films with salt crystal formation, increased salt concentrations in the surrounding water, exposure to humid air when spores are enclosed in water films), and to produce Conchocelis filaments of normal appearance when subsequently germinated in sea water cultures. Tolerances of lowered salinities were observed down to 17.4%., but little survival at salinities lower than this. Alpha-spore germination on thalli of intertidal macro-algae was observed, with initial penetration in some cases. Penetrations of algal thalli were observed with Conchocelis filaments of α-spores germinated on red algae from low intertidal and subtidal habitats. Cell recognition phenomena would seem to be involved in these growth responses.  相似文献   

9.
The specialized salt glands on the epidermis of halophytic plants secrete excess salts from tissues by a mechanism that is poorly understood. We examined the salt glands as putative salt and water bi‐regulatory units that can respond swiftly to altering environmental cues. The tropical mangrove tree species (Avicennia officinalis) is able to grow under fluctuating salinities (0.7–50.0 dS m?1) at intertidal zones, and its salt glands offer an excellent platform to investigate their dynamic responses under rapidly changing salinities. Utilizing a novel epidermal peel system, secretion profiles of hundreds of individual salt glands examined revealed that these glands could secrete when exposed to varying salinities. Notably, rhythmic fluctuations observed in secretion rates were reversibly inhibited by water channel (aquaporin) blocker, and two aquaporin genes (PIP and TIP) preferentially expressed in the salt gland cells were rapidly induced in response to increasing salt concentration. We propose that aquaporins are involved and contribute to the re‐absorption of water during salt removal in Avicennia officinalis salt glands. This constitutes an adaptive feature that contributes to salt balance of trees growing in saline environments where freshwater availability is limited.  相似文献   

10.
Perennial wheatgrasses of the genera Thinopynim, Leymus andPsathyrostachys were subjected to high and low salinities todetermine whether the enhanced K/Na discrimination trait wasexpressed in these members of the Triticeae. At low salinities,where the enhanced K/Na discrimination trait is most evident,the leaf cation concentrations were consistent with the operationof the trait. At higher salinities sodium exclusion and potassiumretention were greater than in tetraploid wheat. Experimentswith hexaploid or octoploid wheat x Thinopynim amphidiploidsshowed that the presence of the D genome of wheat greatly affectedcation discrimination, and pointed to the absence of enhancedK/Na discrimination in the perennial wheatgrasses. Results obtainedwith Thinopynim elongatum addition lines, and the uptake of22Na into 'low-salt' amphiploid seedlings, are consistent withthe absence of the trait in Thinopynim. Key words: Wheat, Thinopyrum, Leymus, amphiploids, salt  相似文献   

11.
Changes in free amino acids (FAA) in the hemolymph of the giant freshwater prawn, Macrobrachium rosenbergii, were examined in individuals exposed to varying salinities for up to 1 week. In freshwater and under conditions of low salinity, total FAA concentrations were maintained between approximately 0.85 and 1 mM and did not exhibit changes in response to salinity exposure. Under high salinities, total FAA concentrations increased dramatically, reaching up to 2.1 mM depending on treatment. Examination of individual amino acid concentrations revealed that these increases were based on specific changes in glycine, arginine, alanine, proline and lysine. Among these, alanine showed the greatest increases, resulting in levels six-fold higher under high salinity than in freshwater and under low salinity. The other amino acid species showed increases of 2.5-fold compared to original values. These five FAAs in freshwater and under low salinity together occupied approximately 45% of total FAA contents and under high salinity comprised more than 70% of total FAA contents. These results suggest that specific hemolymph FAAs are involved in mediating response to salinity exposure in freshwater prawns.  相似文献   

12.
13.
The collembolan Cryptopygus antarcticus Willem is potentially exposed to habitat salinities equal to (or greater than) sea water, as a result of sea spray, drying of littoral habitats, dispersal or temporary entrapment on the surface of sea water, or exposure to localized salt deposits from dense vertebrate populations on terrestrial habitats. To test the impact of this exposure on C. antarcticus, the tolerance of the collembolan to being placed on the surface of sea water and solutions of higher salt concentrations is investigated. The effects of acclimation to exposure to liquids of different salinities [44, 100 and 200 parts per thousand (ppt) sea salt] on cold and heat tolerance, as well as thermal activity thresholds, are also explored. Cryptopygus antarcticus shows > 75% survival after 10 days of exposure to both sea water and 100‐ppt salt, whereas it exhibits significantly lower survival after 5 days (60% survival) and 10 days (40%) of exposure to a 200‐ppt solution. Body water content also decreases after exposure to all salinities, and particularly to the 200‐ppt solution, in which > 50% of body water is lost after 10 days. Acclimation results in greater cold tolerance, although heat tolerance at 33, 35 and 37 °C is either unaltered or reduced. The thermal activity thresholds of C. antarcticus at both high and low temperatures are also negatively affected by saline exposure. The data demonstrate the capacity of C. antarcticus to tolerate periods of exposure to saline conditions, and also show that this exposure can enhance cross‐tolerance to low temperatures. The present study also demonstrates that salinity‐associated stress at moderately low and high temperatures narrows the thermal range of activity, thus reducing the ability of collembolans to forage, develop and reproduce. © 2013 The Royal Entomological Society  相似文献   

14.
Germination, growth, and physiological responses of hybridizing Carpobrotus from coastal California to soil salinity were studied. Hybrids are presumably the result of hybridization and introgression between the exotic Carpobrotus edulis, a succulent perennial invading coastal habitats, and the native or long-naturalized C. chilensis. Germination responses were investigated at 0, 10, 20, and 50% seawater. Seedling growth and physiology were compared by irrigating seedlings with solutions of the same seawater concentrations and in low and high nutrients. Germination was inhibited in the presence of salt, but recovered after transferring the seeds to fresh water. Seeds exposed to salt had higher final germination rates than control. Growth of Carpobrotus was slightly enhanced by low seawater concentrations but reduced at high salinity at both nutrient regimes. Leaf cell sap osmolarity increased with increasing soil salinity, and taxa did not differ significantly in this physiological adjustment. Leaf carbon isotope ratios (∂13C) ranged from −28 to −22‰ and became less negative at higher salinities, indicating an improved water use efficiency in the seedlings at high salt concentrations. In addition, ∂13C values were generally less negative at high than at low nutrients. Differences among taxa were generally small. The results show that salinity affects both establishment and growth of hybridizing Carpobrotus. The overall weak species differences in salt tolerance indicate that the exotic C. edulis can occupy the same sites as C. chilensis in terms of salinity. The similarity of hybrids in their response to salinity suggests that they may contribute to the invasion by Carpobrotus.  相似文献   

15.
Summary Seedling recruitment in salt marsh plant communities is generally precluded in dense vegetation by competition from adults, but is also relatively rare in disturbance-generated bare space. We examined the constraints on seedling recruitment in New England salt marsh bare patches. Under typical bare patch conditions seed germination is severely limited by high substrate salinities. We examined the germination requirements of common high marsh plants and found that except for one notably patch-dependent fugitive species, the germination of high marsh plants is strongly inhibited by the high soil salinities routinely encountered in natural bare patches. Watering high marsh soil in the greenhouse to alleviate salt stress resulted in the emergence of up to 600 seedlings/225 cm2. The vast majority of this seed bank consisted of Juncus gerardi, the only common high marsh plant with high seed set. We tested the hypothesis that salt stress limits seedling contributions to marsh patch secondary succession in the field. Watering bare patches with fresh water partially alleviated patch soil salinities and dramatically increased both the emergence and survival of seedlings. Our results show that seedling recruitment by high marsh perennial turfs is limited by high soil salinities and that consequently their population dynamics are determined primarily by clonal growth processes. In contrast, populations of patch-dependent fugitive marsh plants which cannot colonize vegetatively are likely governed by spatially and temporally unpredictable windows of low salinities in bare patches.  相似文献   

16.
The effects of temperature (8–10 or 20°C) on regulation of haemolymph osmotic and ionic concentrations were investigated over a range of salinities (0–25‰) in fifth-instar larvae of the Death Valley caddisfly Limnephilus assimilis. At low temperatures, levels of chloride and sodium in the haemolymph are regulated over a wide range of salinities corresponding to the salinities at which larvae occur in nature and at which they can complete development into adults. In contrast, haemolymph osmolality is constant at low salinities (<14‰) but approaches conformity with the medium at higher salinities. High temperature reduces the larva's ability to maintain low chloride concentrations in its haemolymph and also leads to a reduction in haemolymph osmotic pressure; thus, at high temperatures ions account for more of the haemolymph osmotic concentration than at low temperatures. These data suggest that the absence of larvae from thermal pools and from all Death Valley waters in summer can be explained by the effects of high water temperatures on hydromineral regulation.  相似文献   

17.
SUMMARY. 1. Panicum hemitomon Schult. plants were colleeted from Louisiana's Mississippi River deltaic plain freshwater marsh and subjected to salinities of 5–12 ppt under controlled environment conditiotis.
2. The condition was designed to simulate salt stress resulting from storm surges, brine spills associated with oil recovery operations and salt water intrusion due to rapid subsidence and parallel increases in apparent sea level in Louisiana's coastal areas.
3. Plant stomatal conductance was reduced between 55 % and 80% and net photosynthesis declined between 20% and 67% in response to the different salinities within 1 day of salt application. Both responses lasted throughout the entire experiment.
4. Salinities ranging between 10 and 12 ppt resulted in tissue death in the plants 4 days after salt exposure.
5. In addition to the short-term impact of salt water influx on gas exchange of P, hemitomon reported here, the potential long-term effects on habitat change are discussed.  相似文献   

18.
Responses of seed germination to salinity were examined using 37 species collected from salt marshes, cliffs, and fore (unstable) and hind (stable) sand dunes along Japanese coasts. For comparison, seed germination of nine inland species was also examined. The soil salinities in salt marshes ranged from 150 to 300 mmol/L NaCl, whereas those in fore and hind dunes ranged from 0 to 150 mmol/L NaCl, with a few exceptions. Cliff soils showed relatively high salinities up to 300 mmol/L NaCl. Ciff and foredune soils that encountered a typhoon and storm showed high salinities >300 mmol/L NaCl. Salt tolerance in seed germination of coastal plants was ordered by comparing the responses of percentage and rate of germination to salinity conditions up to 200 mmol/L NaCl, being in the order of salt marsh>cliff>foredune≅hind dune≅inland. Thse results indicate that salt tolerance in seed germination of coastal plants is closely related to the salinity conditions of their habitats. Germination experiments under favorable conditions showed that a high percentage of the seeds of salt marsh species germinate rapidly, those of diff species germinate slowly and those of foredune species exhibit a low percentage and low rate of germination. It seems that these germination characteristics contribute to the success of germination at the ‘safe site’ and the subsequent survivorship of emerged plants in their natural habitats.  相似文献   

19.
Growth and survival of veligers of Amphibola crenata (Gmelin) were followed in a range of salinities from 4 to 35%. In salinities of 18%. and below, growth was slowed and a large proportion of veligers died. In 4 to 12%., no larvae survived to metamorphosis, but these low salinities were tolerated for short periods.Newly post-metamorphic snails and juveniles collected from the field survived well even at 4%., showing that greater tolerance of low external salinities developed at metamorphosis. Examination of the physiology of adult snails suggested that this may be due to the development of osmoregulating mechanisms, because the adults maintain the blood hyperosmotic to the medium in 4 and 9%. The kidney, however, does not seem to be involved in this regulation because urine is isosmotic with the blood. An extra-renal mechanism of salt uptake is, therefore, postulated.  相似文献   

20.
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号