首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On treatment with 7-ketocholesterol (7-keto) or 7beta-hydroxycholesterol (7beta-OH), which are major oxysterols in atherosclerotic plaques, the simultaneous identification of oncotic and apoptotic cells suggests that these compounds activate different metabolic pathways leading to various modes of cell death. With U937, MCF-7 (caspase-3 deficient), MCF-7/c3 cells (stably transfected with caspase-3), we demonstrate that caspase-3 is essential for caspase-9, -7, -8 activation, for Bid degradation mediating mitochondrial cytochrome c release, for cleavage of poly(ADP-ribose) polymerase and inhibitor of the caspase-activated deoxyribonuclease, and, at least in part, for internucleosomal DNA fragmentation. The crucial role of caspase-3 was supported by the use of z-VAD-fmk and z-DEVD-fmk, which abolished apoptosis and the associated events. However, inactivation or lack of caspase-3 did not inhibit 7-keto- and 7beta-OH-induced cell death characterized by staining with propidium iodide, loss of mitochondrial potential. The mitochondrial release of apoptosis-inducing factor and endonuclease G was independent of the caspase-3 status, which conversely played major roles in the morphological aspects of dead cells. We conclude that caspase-3 is essential to trigger 7-keto- and 7beta-OH-induced apoptosis, that these oxysterols simultaneously activate caspase-3-dependent and/or -independent modes of cell death.  相似文献   

2.
Despite the improvements in cancer treatment, breast cancer still remains the second most common cause of death from cancer in women. Doxorubicin (DOXO) is widely used for cancer treatment. However, drug resistance limits the treatment outcome. Here, we investigated the toxicity of DOXO in combination with an antifungal agent amphotericin B (AmB) against the MCF-7 breast cancer cell line. The cell viability was measured using MTT assay. The apoptosis was studied by caspase-8 and caspase-9 activity measurements and DNA fragmentation was investigated by TUNEL assay. The combination of two drugs significantly increased the apoptotic index and the caspase-8 and caspase-9 activities in comparison to DOXO-treated cells. Our finding showed that pre-treatment of MCF-7 cells with AmB synergistically exerted the anticancer effect of DOXO through the caspase-dependent apoptosis manner.  相似文献   

3.
Recent studies have implicated apoptosis as one of the most plausible mechanisms of the chemopreventive effects of selenium compounds, and reactive oxygen species (ROS) as important mediators in apoptosis induced by various stimuli. In the present study, we demonstrate that Se-methylselenocysteine (MSC), one of the most effective selenium compounds at chemoprevention, induced apoptosis in HL-60 cells and that ROS plays a crucial role in MSC-induced apoptosis. The uptake of MSC by HL-60 cells occurred quite early, reaching the maximum within 1 h. The dose-dependent decrease in cell viability was observed by MSC treatment and was coincident with increased DNA fragmentation and sub-G(1) population. 50 microM of MSC was able to induce apoptosis in 48% of cell population at a 24 h time point. Moreover, the release of cytochrome c from mitochondria and the activation of caspase-3 and caspase-9 were also observed. The measurement of ROS by dichlorofluorescein fluorescence revealed that dose- and time-dependent increase in ROS was induced by MSC. N-acetylcysteine, glutathione, and deferoxamine blocked cell death, DNA fragmentation, and ROS generation induced by MSC. Moreover, N-acetylcysteine effectively blocked caspase-3 activation and the increase of the sub-G(1) population induced by MSC. These results imply that ROS is a critical mediator of the MSC-induced apoptosis in HL-60 cells.  相似文献   

4.
Divalent cations, including Zinc and Manganese ions, are important modulators of cell activation. We investigated the ability of these two divalent cations to modulate apoptosis in human Burkitt lymphoma B cells line (Ramos). We found that Zinc (from 10 to 50 microM) inhibited Manganese-induced caspase-3 activation and apoptosis of Ramos cells. Higher concentration of Zinc (50 to 100 microM) did not prevent Manganese-mediated apoptosis but rather increased cell death among Ramos cells. This Zinc-mediated cell death was associated with apoptotic features such as cell shrinkage, the presence of phosphatidylserine residues on the outer leaflet of the cells, chromatin condensation, DNA fragmentation and decrease of mitochondrial transmembrane potential. Zinc-mediated apoptosis was associated with caspase-9 and caspase-3 activation as revealed by the appearance of active p35 fragment of caspase-9 and p19 and p17 of caspase-3 as well as in vivo cleavage of PARP and of a cell-permeable fluorogenic caspase-3 substrate (Phiphilux-G(1)D(2)). Both Zinc-mediated apoptosis and caspase-3 activation were prevented by the cell-permeable, broad-spectrum inhibitor of caspases (zVAD-fmk) or overexpression of bcl-2. In addition, we show that Zinc-induced loss of transmembrane mitochondrial potential is a caspase-independent event, since it is not modified by the presence of zVAD-fmk, which is inhibited by overexpression of bcl-2. These results indicate that depending on its concentration, Zinc can exert opposite effects on caspase-3 activation and apoptosis in human B lymphoma cells: concentrations below 50 microM inhibit caspase-3 activation and apoptosis whereas higher concentrations of Zinc activate a death pathway associated with apoptotic-like features and caspase-3 activation.  相似文献   

5.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), one of the tryptophan pyrolysates, is a dietary carcinogen and is formed in cooked meat and fish in our daily diet. Trp-P-1 will affect the cells in the blood circulation system before it causes carcinogenicity in target organs such as the liver. In this study, the cytotoxicity of Trp-P-1 was investigated in mononuclear cells (MNCs) from blood. Trp-P-1 (10-15 microM) decreased cell viability and induced apoptosis characterized both by morphological changes and by DNA fragmentation 4 h after treatment. DNA fragmentation was also observed following treatment at 1 nM after 24 h in culture. This result suggested that apoptosis would occur in the body following unexpected intake of foods containing Trp-P-1. To determine the mechanism of apoptosis, we investigated the activation of the caspase cascade in MNCs. Trp-P-1 (10-15 microM) activated the caspase cascade, i.e. the activity of caspase-3, -6, -7, -8 and -9 increased dose-dependently using peptide substrates, the active forms of caspase-3, -8 and -9 were detected by immunoblotting, and cleavage of poly(ADP-ribose) polymerase and protein kinase C-delta as the intracellular substrates for caspases was observed. A peptide inhibitor of caspase-8 completely suppressed activation of all other caspases, while an inhibitor of caspase-9 did not. These results indicated that caspase-8 may act as an apical caspase in the Trp-P-1-activated cascade.  相似文献   

6.
We investigated apoptotic cell death in murine macrophage cell line J774.1 following Actinobacillus actinomycetemcomitans infection. Infected macrophages generally kill bacteria within phagosomes with nitric oxide (NO). Our previous study demonstrated that DNA fragmentation in infected cells increased significantly on addition of S-Methylisothiourea (SMT), a selective inhibitor of inducible NO synthetase (iNOS). The purpose of the present study was to determine the mechanism via which NO affects apoptosis of infected macrophages. J774.1 cells were infected with A. actinomycetemcomitans Y4 at a bacterium/cell ratio of 500:1. The infected cells were then cultured in the presence or absence of SMT (400 microM). Culture supernatant was removed 21 h after the infection to measure LDH activity. Additionally, cellular proteins were extracted from the infected cells and measured for histone-associated DNA fragmentation and caspase-1, -3, -5, -6, -8, -9 activities. LDH activity and DNA fragmentation were significantly elevated by the infection; moreover, levels increased further on addition of SMT. Caspase activity of infected cells, particularly caspase-3, was significantly higher than that of uninfected cells. Furthermore, caspase activity increased on addition of SMT. These findings indicate that NO protects infected J774.1 cells, at least in part, against apoptotic cell death via a decrease in caspase activity.  相似文献   

7.
To test the role of caspase 3 in apoptosis and in overall cell lethality caused by the protein kinase inhibitor staurosporine, we compared the responses of MCF-7c3 cells that express a stably transfected CASP-3 gene to parental MCF-7:WS8 cells transfected with vector alone and lacking procaspase-3 (MCF-7v). Cells were exposed to increasing doses (0.15-1 microM) of staurosporine for periods up to 19 h. Apoptosis was efficiently induced in MCF-7c3 cells, as demonstrated by cytochrome c release, processing of procaspase-3, procaspase-8, and Bid, increase in caspase-3-like DEVDase activity, cleavage of the enzyme poly(ADP-ribose) polymerase, DNA fragmentation, changes in nuclear morphology, and TUNEL assay and flow cytometry. For all of these measures except cytochrome c release, little or no activity was detected in MCF-7v cells, confirming that caspase-3 is essential for efficient induction of apoptosis by staurosporine, but not for mitochondrial steps that occur earlier in the pathway. MCF-7c3 cells were more sensitive to staurosporine than MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to killing by staurosporine when evaluated by a clonogenic assay. A similar distinction between apoptosis and loss of clonogenicity was observed for the cancer chemotherapeutic agent VP-16. These results support our previous conclusions with photodynamic therapy: (a) assessing overall reproductive death of cancer cells requires a proliferation-based assay, such as clonogenicity; and (b) the critical staurosporine-induced lethal event is independent of those mediated by caspase-3.  相似文献   

8.
Apoptosis is a major cause of cell death in the nervous system. It plays a role in embryonic and early postnatal brain development and contributes to the pathology of neurodegenerative diseases. Here, we report that activation of the P2X7 nucleotide receptor (P2X7R) in rat primary cortical neurons (rPCNs) causes biochemical (i.e., caspase activation) and morphological (i.e., nuclear condensation and DNA fragmentation) changes characteristic of apoptotic cell death. Caspase-3 activation and DNA fragmentation in rPCNs induced by the P2X7R agonist BzATP were inhibited by the P2X7R antagonist oxidized ATP (oATP) or by pre-treatment of cells with P2X7R antisense oligonucleotide indicating a direct involvement of the P2X7R in nucleotide-induced neuronal cell death. Moreover, Z-DEVD-FMK, a specific and irreversible cell permeable inhibitor of caspase-3, prevented BzATP-induced apoptosis in rPCNs. In addition, a specific caspase-8 inhibitor, Ac-IETD-CHO, significantly attenuated BzATP-induced caspase-9 and caspase-3 activation, suggesting that P2X7R-mediated apoptosis in rPCNs occurs primarily through an intrinsic caspase-8/9/3 activation pathway. BzATP also induced the activation of C-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated kinases (ERK1/2) in rPCNs, and pharmacological inhibition of either JNK1 or ERK1/2 significantly reduced caspase activation by BzATP. Taken together, these data indicate that extracellular nucleotides mediate neuronal apoptosis through activation of P2X7Rs and their downstream signaling pathways involving JNK1, ERK and caspases 8/9/3.  相似文献   

9.
In contrast to caspase-8, controversy exists as to the ability of caspase-10 to mediate apoptosis in response to FasL. Herein, we have shown activation of caspase-10, -3, and -7 as well as B cell lymphoma-2-interacting domain (Bid) cleavage and cytochrome c release in caspase-8-deficient Jurkat (I9-2) cells treated with FasL. Apoptosis was clearly induced as illustrated by nuclear and DNA fragmentation. These events were inhibited by benzyloxycarbonyl-VAD-fluoromethyl ketone, a broad spectrum caspase inhibitor, indicating that caspases were functionally and actively involved. Benzyloxycarbonyl-AEVD-fluoromethyl ketone, a caspase-10 inhibitor, had a comparable effect. FasL-induced cell death was not completely abolished by caspase inhibitors in agreement with the existence of a cytotoxic caspase-independent pathway. In subpopulations of I9-2 cells displaying distinct caspase-10 expression levels, cell sensitivity to FasL correlated with caspase-10 expression. A robust caspase activation, Bid cleavage, and DNA fragmentation were observed in cells with high caspase-10 levels but not in those with low levels. In vitro, caspase-10, as well as caspase-8, could cleave Bid to generate active truncated Bid (p15). Altogether, our data strongly suggest that caspase-10 can serve as an initiator caspase in Fas signaling leading to Bid processing, caspase cascade activation, and apoptosis.  相似文献   

10.
Prostaglandin (PG) A2 has been reported to inhibit the growth or induce apoptosis of various tumor cells. In the present study, PGA2 inhibited the growth of HL-60 cells and concomitantly-induced nuclear condensation and DNA fragmentation, characteristics of apoptosis. Down-regulation of c-myc mRNA, and activation of caspase-3 were observed in the PGA2 -treated cells. PGA2-induced DNA fragmentation was completely abolished in the presence of zVAD-Fmk or zDEVD-Fmk. But, relative cell survival was not improved up to that of untreated cells by pretreatment of caspase inhibitors, and c-myc down-regulation was not recovered by caspase inhibitors, either. Moreover, cytochrome c release and activation of caspase-9 was also observed in apoptotic cells and a specific inhibitor of caspase-9 (zLEHD-Fmk) prevented both DNA fragmentation and activation of caspase-3, but not relative cell survival, implying the upstream mitochondrial event of caspase-3 activation. In addition, antagonistic Fas antibody (ZB4) exerted no effect on the apoptosis. Taken together, these results suggest that PGA2 may induce the apoptosis as well as growth inhibition in HL-60 cells, and cytochrome c release and caspase activation seem to play a critical role in this apoptosis which might be independent or downstream of growth inhibition associated with c-myc down-regulation.  相似文献   

11.
BACKGROUND: Previous work has shown that caspase-3 activation and DNA fragmentation, two hallmarks of apoptosis, are induced in day 9 mouse embryos exposed to hyperthermia (43 degrees C); however, the methods used to assess caspase-3 activation (Western blot) and DNA fragmentation (gel electrophoresis) did not allow these apoptotic events to be localized to specific cells within the embryo. METHODS: To co-localize active caspase-3 and DNA fragmentation to specific cells, we used paraffin sections of day 13 mouse limb buds, sections of control and hyperthermia-treated day 9 mouse embryos, and sequential immunohistochemical staining for caspase-3 and TUNEL staining for DNA fragmentation. We used a primary rabbit antibody specific for the active, p17 subunit of caspase-3 and a goat anti-rabbit secondary antibody conjugated to Alexa 594 fluorochrome (red fluorescence) to localize active caspase-3. To co-localize DNA fragmentation, we subsequently processed the same sections by the TUNEL method using fluorescein-labeled dUTP (green fluorescence). RESULTS: Using this dual labeling approach, we show that active caspase-3 (caspase-3 positive) and DNA fragmentation (TUNEL positive) occur in a sub-population of interdigital mesenchyme cells of day 13 mouse limb buds. Using the same approach, we detected a small number of caspase-3 positive and TUNEL-positive cells in the central nervous system and in the mesenchyme of the first branchial arch of untreated day 9 mouse embryos. The number of caspase-3 and TUNEL-positive cells are greatly increased 5 hr after a brief exposure to hyperthermia (43 degrees C, 13 min). Caspase-3 and TUNEL-positive cells were most abundant in the neuroepithelium of the developing central nervous system, mesenchyme of the first pharyngeal arch, and somitic mesoderm. In contrast, the heart, mesencephalic mesenchyme, and the visceral yolk sac contained few, if any, caspase-3 and TUNEL-positive cells. CONCLUSIONS: This is the first demonstration that activation of caspase-3 and DNA fragmentation co-localize in cells programmed to die in the interdigital mesenchyme of day 13 limb buds and in the neuroepithelium and branchial arch mesenchyme of day 9 mouse embryos. Similarly, our results represent the first co-localization of teratogen-induced activation of caspase-3 and DNA fragmentation in specific cells of early postimplantation mouse embryos, and confirm that cells of the developing central nervous system are acutely sensitive to the cell death-inducing potential of hyperthermia, whereas cells of the heart are resistant. Finally, we show for the first time that, like cells of the heart, cells of the mesencephalic mesenchyme and the visceral yolk sac are also resistant to hyperthermia-induced apoptosis.  相似文献   

12.
Previous study has found that a new nitroxyl spin-labeled derivative of podophyllotoxin, 4-[4″-(2″,2″,6″,6″-tetramethyl-1″-piperidinyloxy)amino]-4′-demethyl-epipodophyllotoxin (GP7), can induce apoptosis in human leukemia cells. However, there have been no studies about the effects of GP7 on osteosarcoma (OS) cells. Here, we observed the anti-OS effects of GP7 in mouse and human OS cells with the comparison of etoposide. GP7 and etoposide inhibited the proliferation of a panel of mouse and human OS cells in a concentration- or time-dependent manner, and the inhibitory effect of GP7 on the proliferation of mouse LM8 or human U2OS cells was 1.28- or 1.35-fold higher than that of etoposide. GP7 or etoposide augmented the anti-OS effects of methotrexate, adriamycin, cisplatin, or their combination, and the combined inhibitory effects of GP7 with MTX on the proliferation of LM8 cells was higher than those of etoposide with MTX. GP7 arrested the cell cycle in S phase but etoposide in G2/M phase. GP7 or etoposide induced sub-G1 peak, apoptotic DNA fragmentation, activations of caspase-3, -8, -9, and DNA fragmentation factor, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bak, and cytochrome-c release from mitochondria in both mouse and human OS cells. GP7 or etoposide also induced endonuclease G translocation from mitochondria into cytosol in mouse cells. GP7- or etoposide-induced apoptotic DNA fragmentation of human OS cells was inhibited by the pan caspase inhibitor and caspase-9 inhibitor, not by caspase-8 inhibitor whereas it was not inhibited by the pan caspase inhibitor in mouse OS cells. Our findings indicate that GP7 is effective against mouse and human OS cells in vitro. The apoptotic DNA fragmentation in mouse OS cells may be mediated by caspase-independent pathway with the involvement of endonuclease G whereas in human OS cells by caspase-9-dependent pathway downstream of the cytochrome-c-initiated caspase cascade.  相似文献   

13.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

14.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

15.
Photodynamic therapy (PDT) causes mitochondrial damage and induces apoptosis through release of cytochrome c and activation of caspase-3. To test whether caspase 3 is the sole executioner of apoptosis and its role in overall cell lethality, we compared the response of MCF-7c3 cells that express a stably transfected CASP-3 gene to that of parental MCF-7:SW8 cells transfected with vector alone (MCF-7v). Following photosensitization with the phthalocyanine Pc 4 and red light, cytochrome c was released from the mitochondria to equivalent extents in the two cell lines. However, the appearance of apoptotic indicators, such as active caspase-3 (DEVDase), cleavage of poly(ADP-ribose) polymerase, and oligonucleosomal DNA fragmentation, was observed only in MCF-7c3 cells during the first 6 h after photosensitization. Although production of 50-kb DNA fragments and chromatin condensation were found in PDT-treated MCF-7v cells by 20-24 h posttreatment, the rate and extent of apoptosis were much less than in MCF-7c3 cells. MCF-7c3 cells were more sensitive to photosensitization than were MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to photodynamic killing when evaluated by a clonogenic assay. These results show (a) the importance of assessing overall cell death by clonogenic assay; (b) that the critical lethal event is independent of caspase-3, perhaps at or near the release of cytochrome c from mitochondria; and (c) that the caspase-3-mediated events appear to be irrelevant in determining overall killing of cells.  相似文献   

16.
Excess ER stress induces caspase-12 activation and/or cytochrome c release, causing caspase-9 activation. Little is known about their relationship during ER stress-mediated cell death. Upon ER stress, P19 embryonal carcinoma (EC) cells showed activation of various caspases, including caspase-3, caspase-8, caspase-9, and caspase-12, and extensive DNA fragmentation. We examined the relationship between ER stress-mediated cytochrome c/caspase-9 and caspase-12 activation by using caspase-9- and caspase-8-deficient mouse embryonic fibroblasts and a P19 EC cell clone [P19-36/12 (-) cells] lacking expression of caspase-12. Caspase-9 and caspase-8 deficiency inhibited and delayed the onset of DNA fragmentation but did not inhibit caspase-12 processing induced by ER stress. P19-36/12 (-) cells underwent apoptosis upon ER stress, with cytochrome c release and caspase-8 and caspase-9 activation. The dominant negative form of FADD and z-VAD-fmk inhibited caspase-8, caspase-9, Bid processing, cytochrome c release, and DNA fragmentation induced by ER stress, suggesting that caspase-8 and caspase-9 are the main caspases involved in ER stress-mediated apoptosis of P19-36/12 (-) cells. Caspase-8 deficiency also inhibited the cytochrome c release induced by ER stress. Thus, in parallel with the caspase-12 activation, ER stress triggers caspase-8 activation, resulting in cytochrome c/caspase-9 activation via Bid processing.  相似文献   

17.
The importance of the mitochondria in UV-induced apoptosis has become increasingly apparent. Following DNA damage cytochrome c and other pro-apoptotic factors are released from the mitochondria, allowing for formation of the apoptosome and subsequent cleavage and activation of caspase-9. Active caspase-9 then activates downstream caspases-3 and/or -7, which in turn cleave poly(ADP)-ribose polymerase (PARP) and other down-stream targets, resulting in apoptosis. In an effort to understand the mechanisms of Akt-mediated cell survival in breast cancer, we studied the effects of insulin-like growth factor (IGF)-I treatment on UV-treated MCF-7 human breast cancer cells. Apoptosis was induced in MCF-7 cells after UV treatment, as measured by caspase-7 and PARP cleavage, and IGF-I co-treatment protected against this response. Surprisingly caspase-9 cleavage was unchanged with UV and/or IGF-I treatment. Using MCF-7 cells overexpressing caspase-3 we have shown that resistance of caspase-9 to cleavage was not altered by the expression of caspase-3. Furthermore, overexpression of caspase-9 did not enhance PARP or caspase-7 cleavage after UV treatment. Because caspase-8 was activated with UV treatment alone, we believe that UV-induced apoptosis in MCF-7 cells occurs independently of cytochrome c and caspase-9, supporting the existence of a cytoplasmic inhibitor of cytochrome c in MCF-7 cells. We anticipate that such inhibitors may be overexpressed in cancer cells, allowing for treatment resistance.  相似文献   

18.
A number of polyamine derivatives have demonstrated potential as therapeutic agents. For example, 1,12-bisethylspermine and bisnaphthalimide (elinafide) are currently in phase I clinical trials for the treatment of certain cancers. Here, the biological activities of two new groups of polyamine derivative, namely the oxa-polyamines and the bisnaphthalimides, are presented. The most active compounds in the oxa-polyamine and bisnaphthalimido series possessed IC(50) values of 2.93 and 1.38 microM, respectively, against MCF7 cells after 48 h of exposure. The structure-relationship activities of each group of compounds are discussed. Bisnaphthalimido compounds are DNA-binding agents. Addition of the bisnaphthalimides PK3, PK4, PK5, PK6 and PK7, at a concentration of 10 microM, to the calf thymus DNA duplex increased the T (m) of DNA by 11.55+/-0.56, 14.545+/-1.59, 6.23+/-2.45, 12.56+/-1.84 and 16.45+/-0.39 degrees C respectively. With the exception of PK5, all compounds bind to DNA by intercalation as judged by effect of compounds on DNA mobility. Ethidium bromide displacement assay showed that all the compounds have significant affinity for calf thymus DNA (the drug concentration required to reduce the fluorescence of initially DNA-bound ethidium bromide by 50%, C(50), was 1.21-17.33 microM). The order of DNA-binding strength was PK4 > PK3 > PK7 > PK6 > PK5. In HL-60 promyelocytic leukaemia cells, oxa-polyamine and bisnaphthalimido treatment resulted in a decline in cell proliferation and viability. The assays performed suggested that apoptosis was not the principal cell death mechanism involved in oxa-polyamine cytotoxicity. In contrast, HL-60 cell death induced by the bisnaphthalimido series was characterized by early exposure of phosphatidylserine exclusive from membrane damage, elevated caspase-3 activity, increased DNA instability and, ultimately, DNA fragmentation. Thus the principal cytotoxic members of the bisnaphthalimido series appear to induce apoptosis.  相似文献   

19.
Lui JC  Kong SK 《FEBS letters》2006,580(8):1965-1970
The involvement of caspase-3 and its failure in the induction of DNA fragmentation during erythropoiesis were investigated with TF-1 cells. During erythroid differentiation, caspase-3 activation and cleavage of caspase-3 substrates such as ICAD (inhibitor of caspase-activated DNase) were detected without concomitant phosphatidyl-serine (PS) externalization and DNA fragmentation. These observations are in contrast to our understanding that DNA is degraded by CAD (caspase-activated DNase) when ICAD is cleaved by caspase-3. Our study demonstrates that CAD is downregulated at the mRNA and protein level during the erythroid differentiation in TF-1 cells. This provides a mechanism for the first time how cells avoid DNA fragmentation with activated caspase-3.  相似文献   

20.
羊栖菜多糖通过激活Caspase途径诱导Lovo细胞凋亡   总被引:1,自引:0,他引:1  
研究了羊栖菜多糖(Sargassum Fusiforme Polysaccharides,SFPS)诱导人大肠癌lovo细胞凋亡及凋亡过程中caspase-3、caspase-8、caspase-9的活性变化。MTT法检测SFPS对lovo细胞增殖的抑制率;通过电镜、琼脂糖凝胶电泳、流式细胞术鉴定细胞凋亡;应用Western印迹法测定caspase-3酶原和caspase-9的变化;RToPCR检测caspase-3 mRNA表达;caspase-3,caspase-8、caspase-9活性检测试剂盒观察caspase-3、caspase-8、caspase-9的活性改变。结果显示,SFPS对lovo细胞增殖有显著抑制作用,经形态变化、DNA条带和流式细胞分析,可见明显的细胞凋亡特征。SFPS处理lovo细胞后,发现caspase-3酶原蛋白表达降低,caspase-3 mRNA高表达,并具有剂量和时间的依赖性。而在检测蛋白中,也发现caspase-9被激活进而形成具有活性的片段。另外,caspase的活性检测也进一步发现caspase-3、caspase-9的活性逐步增高。实验结果提示SFPS在体外诱导lovo胞凋亡,这可能是SFPS抑制肿瘤增殖的机制之一,并且是通过激活启动caspase-9,进而激活下游效应caspase-3的级联反应来实现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号