首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review we discuss the evidence that activation and inactivation of M-phase promoting factor (MPF), the universal mitotic activator, are regulated locally within the cell, and consider the mechanisms that might be responsible. Localised initiation of MPF activation has been demonstrated in Xenopus eggs and egg fragments by examination of the timing of surface contraction waves (SCWs), indicators of MPF activity, and confirmed by direct measurement of MPF in such fragments. Both the timing and the site of SCW initiation relate to the presence of nuclei and of associated centriole-nucleated microtubules. Localised MPF activation is likely to occur in the perinuclear cytoplasm as well as within the nucleus. Studies in a number of cell types show that the perinuclear/centrosomal region is the site of accumulation of MPF itself (the cyclin B-Cdc2 kinase complex) and of many of its molecular regulators. It also harbours calcium-regulating machinery, and in sea urchin eggs is the site of transient calcium release at the onset of mitosis. During mitosis MPF, regulatory molecules and calcium signalling components associate with spindle structures. Inactivation of MPF to end mitosis has been shown to be initiated locally at the mitoic spindle in Drosophila embryos. In sea urchin and frog eggs, calcium transients are required for both mitotic entry and exit and in mouse eggs, MPF inactivation requires both a calcium signal and an intact spindle. It thus appears that calcium signals coinciding with localised accumulation of MPF regulators are required first to set off and/or amplify the MPF activation process around the nucleus, and later to promote MPF inactivation via cyclin B destruction. Calcium release from sequestering machinery organised around nuclear and astral structures may act co-operatively with localised MPF regulatory molecules to trigger both mitotic entry and exit.  相似文献   

2.
3.
R Pfaller  C Smythe  J W Newport 《Cell》1991,65(2):209-217
Dissociation and association of membranes with chromatin at the beginning and end of mitosis are critical in controlling nuclear dynamics during these stages of the cell cycle. Employing purified membrane and cytosolic fractions from Xenopus eggs, a simple assay was developed for the reversible binding of nuclear membrane vesicles to chromatin. We have shown, using phosphatase and kinase inhibitors, that membrane-chromatin association is regulated by a phosphatase/kinase system. In interphase, the balance in this system favors dephosphorylation, possibly of a membrane receptor, which then mediates chromatin binding. At mitosis the membrane receptor is phosphorylated, causing release of chromatin-bound membrane. Purified MPF kinase does not directly cause membranes to dissociate from chromatin. Rather, binding of membranes to chromatin at mitosis appears to be regulated indirectly by MPF through its action on a phosphatase/kinase system that directly modulates the phosphorylation state of a nuclear membrane component.  相似文献   

4.
本文构建了包括HeLa裂解液和游离小鼠卵母细胞生发泡的实验体系,用于研究Ca^2 及其下游信号对小鼠卵母细胞减数分裂启动的影响。游离的卵母细胞生发泡可以在M期细胞裂解液中发生减数分裂启动,表现为染色质的凝集。进一步的研究表明,Ca^2 信号的存在对G2期细胞裂解液促进减数分裂启动是至关重要的,G2期中期的细胞裂解液只有经Ca^2 诱导后才具有启动生发泡减数分裂的作用,而G2期晚期无论Ca^2 存在与否均诱发减数分裂的启动,但是G2期早期的裂解液无启动减数分裂的作用。卵母细胞的体外培养实验分析也表明,抑制CaM和CaMKⅡ的活性可以阻止GVBD和报制第一极体的释放。免疫沉淀及Western Blotting结果显示,HeLa细胞裂解液中的MPF从G2期中期到M期均存在,且Cdc2亚基的Tyr由磷酸化向去磷酸化转变。结果进一步证明,卵母细胞减数的分裂的启动可能是通过一种Ca^2 /CaM依赖的途径来推动的。  相似文献   

5.
Using [3H]myo-inositol incorporation, changes in phosphoinositol (PI) metabolism at different cell cycle stages in the myxomycete Physarum polycephalum were examined by column chromatography. Two base levels for the inositol trisphosphate (IP3) fraction were determined: a low one for S-phase and a higher one for G2 phase. Two transient increases of IP3 were also observed, one in S-phase, 70 min after mitosis (no G1 phase in the Physarum cell cycle) and another in G2 phase, 90 min before mitosis. It is concluded that the fluctuations in IP3 levels reflect endogenous events in the cell cycle of Physarum, because they occurred in the absence of any exogenous signals. Pulse treatment with Li+ (10 mM) at the points of the cell cycle, characterized by the IP3 transients, had opposite effects: in early S-phase it caused an acceleration while in late G2 phase it caused a prolongation of the cell cycle duration. The pattern of Li(+)-induced changes in PI turnover is also antagonistic: in most cases the IP3 level would decrease, however, Li+ prevents the cell cycle-dependent reduction in IP3 concentration when applied at early S-phase. The possible implications of the autogenous fluctuations in the IP3 fraction on the progression of the cell cycle through several distinct checkpoints are discussed.  相似文献   

6.
After fertilization in Xenopus laevis, inositol 1,4,5-trisphosphate (IP3) mass increased from 53 to 261 fmol/cell and returned to near basal by 10 min after insemination. IP3 was also elevated over control egg levels during first mitosis and first cleavage. Because IP3 levels and the fertilization calcium wave decline at about the same time and because calcium ionophore or pricking the egg increased IP3, the fertilization calcium wave may be due to calcium-induced IP3 production. In addition, the onset of sperm motility was associated with an increase, whereas the acrosomal reaction was accompanied by a decrease in IP3 mass. Combining our published data with this report, the first chronology of the levels of IP3 from the induction of meiosis (maturation) through fertilization and cleavage in one cellular system is summarized. These data suggest an in vivo dose response for IP3 and calcium release. A small (17 fmol/cell) IP3 change during the induction of meiosis may not be associated with a calcium change. Larger IP3 changes at cleavage (40 fmol/cell) and mitosis (125 fmol/cell) are associated with localized small calcium increases, whereas the largest IP3 change (208 fmol/cell) is associated with the large calcium increase at fertilization.  相似文献   

7.
M phase-promoting factor (MPF) consists of a p34cdc2 (cdc2) kinase and cyclin B complex which in its active form promotes G2 to M transition. The role of MPF in G2 arrest following DNA damage, however, has remained largely uncharacterized. We have investigated whether nitrogen mustard (HN2) interfered with either the formation of MPF or its activation. For this purpose, we measured cdc2 kinase activity relative to cdc2 and cyclin B protein turnover and the phosphorylation status of cdc2. Studies were performed in two exceptional human lymphoma cell lines, which differed in HN2 sensitivity by 5-fold (CA46, 50% growth-inhibitory dose = 1.0 microM; JLP119, 50% growth-inhibitory dose = 0.2 microM) but exhibited virtually identical DNA interstrand and DNA-protein cross-link exposure. Following HN2 treatment, CA46 cells ceased to enter mitosis and exhibited a marked delay in G2 phase. Failure to enter mitosis paralleled inhibition of cdc2 kinase. Inhibition was not due to decreased levels of cdc2 or cyclin B protein; rather, G2 arrest correlated with the accumulation of both tyrosine-phosphorylated cdc2 and cyclin B. These findings implied that G2 arrest resulted from a down-regulation of the processes that activate MPF. We also found that JLP119 cells, within a few hours of mitosis at the time of drug treatment, evaded checkpoint control and continued cell division unabated by DNA damage. Furthermore, despite similar DNA cross-link exposure, JLP119 cells within the window of checkpoint control were more susceptible to S phase delay than CA46 cells. Altered cell cycle responses correlated with the greater susceptibility of JLP119 cells to the cytotoxic effects of HN2.  相似文献   

8.
Simian virus 40 (SV40) infection stimulates confluent cultures of monkey kidney cells into successive rounds of cellular DNA synthesis without intervening mitosis. As an initial step in defining the mechanisms responsible for viral inhibition of mitosis, M-phase-promoting factor (MPF) was examined in SV40-infected CV-1 cells passing from G2 phase into a second S phase. MPF is a serine-threonine protein kinase that is essential for mitosis in eukaryotic cells. In SV40-infected cells exiting G2 phase, there was a reduced amount of MPF-associated H1 kinase activity relative to that of uninfected cells passing through mitosis. Both subunits of MPF, cyclin B and the p34cdc2 catalytic subunit, were present and in a complex in infected cells. In uninfected cultures, passage through mitosis was associated with the dephosphorylation of the p34cdc2 subunit, which is characteristic of MPF activation. In contrast, the p34cdc2 subunit remained in the tyrosine-phosphorylated, inactive form in SV40-infected cells passing from G2 phase into a second S phase. These results suggest that although the MPF complex is assembled and modified normally, SV40 interferes with pathways leading to MPF activation.  相似文献   

9.
Receptors for atrial natriuretic peptide (ANP) have been demonstrated in renal mesangial cells as well as other cell types in the glomerulus. The biochemical basis for the effects of ANP on glomerular hemodynamics remains undefined. Using cultured rat glomerular mesangial cells, we demonstrated a concentration-dependent stimulation of cGMP production in intact cells, and of guanylate cyclase in membranes. Despite the presence of a guanylate cyclase response, ANP had no inhibitory effect on basal inositol trisphosphate production nor on basal cytosolic calcium. Arginine vasopressin stimulated IP3 production, caused a rise in cytosolic calcium as measured using the calcium-sensitive fluorescent probe Indo-1, and caused mesangial cell contraction. ANP caused a slight but significant enhancement of vasopressin-stimulated IP3 production, but had no effect on the cytosolic calcium response nor on the contractile response. 8-Bromo-cGMP likewise had no effect on the generation of the calcium signal. These results indicate that the effects of ANP on glomerular hemodynamics are not mediated by an alteration in the generation of the calcium signal in mesangial cells. In contrast, addition of calcium inhibited ANP stimulated guanylate cyclase activity.  相似文献   

10.
本文构建了包括HeLa裂解液和游离小鼠卵母细胞生发泡的实验体系,用于研究Ca2+及其下游信号对小鼠卵母细胞减数分裂启动的影响.游离的卵母细胞生发泡可以在M期细胞裂解液中发生减数分裂启动,表现为染色质的凝集.进一步的研究表明,Ca2+信号的存在对G2期细胞裂解液促进减数分裂启动是至关重要的,G2期中期的细胞裂解液只有经Ca2+诱导后才具有启动生发泡减数分裂的作用,而G2期晚期无论Ca2+存在与否均诱发减数分裂的启动,但是G2期早期的裂解液元启动减数分裂的作用.卵母细胞的体外培养实验分析也表明,抑制CaM和CaMKII的活性可以阻止GVBD和抑制第一极体的释放.免疫沉淀及Western Blotting结果显示,HeLa细胞裂解液中的MPF从G2期中期到M期均存在,且Cdc2亚基的Tyr由磷酸化向去磷酸化转变.结果进一步证明,卵母细胞减数分裂的启动可能是通过一种Ca2+/CaM依赖的途径来推动的.  相似文献   

11.
Calcium regulates progression through several checkpoints in the cell cycle, including the G1/S-phase transition, G2/M-phase transition, and exit from mitosis. In the GH4C1 rat pituitary cell line, calcium mobilizing polypeptides and calcium channel activation inhibit cell proliferation. This report examines the effects of maitotoxin (MTX), an activator of type L voltage-dependent calcium channels (L-VDCC), on calcium influx and cell cycle progression in GH4C1 cells. MTX causes both a block from G1 to S-phase and a concentration-dependent accumulation of cells in G2+M. MTX does not increase the mitotic index; thus, sustained calcium channel activation by MTX results in an accumulation of cells in G2. In order to temporally localize the MTX-induced G2 block relative to cell cycle regulatory events at the G2/M transition, we assessed the relative activity of two cell cycle regulatory protein kinases, CDC2 and CDK2, in MTX-treated cells. CDC2-specific histone kinase activity in MTX-treated cells is lower than either in cells blocked in mitosis with the microtubule destabilizing agent demecolcine or in randomly cycling cells. In contrast, the activity of CDK2 is highest in MTX-treated cells, consistent with a G2 block prior to CDC2 activation. Together, these results implicate calcium as an intracellular signal required for progression through G2 phase of the cell cycle prior to CDC2 kinase activation. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse alpha-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in alpha-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of alpha-amylase. Our data also suggest that high levels of alpha-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous alpha-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis.  相似文献   

13.
Recent advances in cell biology indicate that the interactions between two proteins, cdc2 and cyclin, together with the activity of the cdc2/cyclin complex called MPF in the cytoplasm form the basis of a universal biochemical control mechanism for the cell division cycle in eukaryotes. Based on experimental facts that total cdc2 level is constant throughout the cell cycle and that onset of mitosis is subsequent to activation of MPF, we propose and analyze two different but related models — an ordinary differential equations model and a delay differential equations model — for the control of the early embryonic cell division cycle. Assuming very general reaction terms in the model equations, it is shown that MPF activation and rapid cyclin degradation triggered by active MPF drive cells to alternate between interphase and mitosis, the two phases of the cell cycle.S. Busenberg passed away on April 3, 1993 from complications of ALS (Lou Gehrig's disease). His research was supported by NSF Grant DMS-9112821Research was carried out at Harvey Mudd College and was supported by NSF Grant HRD-9252994  相似文献   

14.
Based on studies that have examined the effect of calcium chelators on cells, it has been proposed that this cation plays a role in regulating cell proliferation. In this study a novel approach was used to indirectly examine the role of calcium in cell cycle progression. A cDNA for the Ca2+-binding protein parvalbumin has been expressed in mouse C127 cells, using a bovine papilloma virus-based expression vector. The normal role of parvalbumin is that of a calcium buffer in vertebrate fast twitch muscle, and the C127 cells do not normally express this protein. The presence of parvalbumin had several effects on the growth of C127 cells. The most striking phenotype was an increase in cell cycle duration which analysis showed was the result of an increase the length of G1 and mitosis (predominantly at prophase). Since changes in cell cycle duration typically occur as a result of changes in G1 duration, the observed increase in the length of mitosis is most unusual. The present results indicate that the previously observed increase in the rate of cell proliferation in cells with elevated calmodulin levels is not the result of a general increase in the level of cytoplasmic calcium-binding protein, but is specific to calmodulin. In addition, the results suggest that calcium regulates progression through mitosis by both calmodulin-dependent (metaphase transition) and -independent (prophase) mechanisms.  相似文献   

15.
Xenopus oocytes and the biochemistry of cell division   总被引:31,自引:0,他引:31  
J L Maller 《Biochemistry》1990,29(13):3157-3166
The control of cell proliferation involves both regulatory events initiated at the plasma membrane that control reentry into the cell cycle and intracellular biochemical changes that direct the process of cell division itself. Both of these aspects of cell growth control can be studied in Xenopus oocytes undergoing meiotic maturation in response to mitogenic stimulation. All mitogenic signaling pathways so far identified lead to the phosphorylation of ribosomal protein S6 on serine residues, and the biochemistry of this event has been investigated. Insulin and other mitogens activate ribosomal protein S6 kinase II, which has been cloned and sequences in oocytes and other cells. This enzyme is activated by phosphorylation on serine and threonine residues by an insulin-stimulated protein kinase known as MAP-2 kinase. MAP kinase itself is also activated by direct phosphorylation on threonine and tyrosine residues in vivo. These results reconstitute one step of the insulin signaling pathway evident shortly after insulin receptor binding at the membrane. Several hours after mitogenic stimulation, a cell cycle cytoplasmic control element is activated that is sufficient to cause entry into M phase. This control element, known as maturation-promoting factor or MPF, has been purified to near homogeneity and shown to consist of a complex between p34cdc2 protein kinase and cyclin B2. In addition to apparent phosphorylation of cyclin, regulation of MPF activity involves synthesis of the cyclin subunit and its periodic degradation at the metaphase----anaphase transition. The p34cdc2 kinase subunit is regulated by phosphorylation/dephosphorylation on threonine and tyrosine residues, being inactive when phosphorylated and active when dephosphorylated. Analysis of phosphorylation sides in histone H1 for p34cdc2 has revealed a consensus sequence of (K/R)S/TP(X)K/R, where the elements in parentheses are present in some but not all sites. Sites with such a consensus are specifically phosphorylated in mitosis and by MPF in the protooncogene pp60c-src. These results provide a link between cell cycle control and cell growth control and suggest that changes in cell adhesion and the cytoskeleton in mitosis may be regulated indirectly by MPF via protooncogene activation. S6 kinase II is also activated upon expression of MPF in cells, indicating that MPF is upstream of S6 kinase on the mitogenic signaling pathway. Further study both of the signaling events that lead to MPF activation and of the substrates for phosphorylation by MPF should lead to a comprehensive understanding of the biochemistry of cell division.  相似文献   

16.
Regulating the onset of mitosis   总被引:22,自引:0,他引:22  
In eukaryotes, G2/M progression is mediated by activation of mitosis promoting factor (MPF). To ensure faithful chromosome segregation, the activity of key mitotic inducers and inhibitors are coupled with chromosome replication, spindle pole duplication, morphogenesis, and DNA damage. Evidence gathered in the past two years has underscored the importance of positioning MPF and its regulators in the proper place at the proper time to ensure orderly progression through the G2/M transition. Altering the spatial organization of G2/M regulators also contributes to prevention of mitosis following DNA damage.  相似文献   

17.
N Furuno  Y Ogawa  J Iwashita  N Nakajo    N Sagata 《The EMBO journal》1997,16(13):3860-3865
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.  相似文献   

18.
Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo.  相似文献   

19.
In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).  相似文献   

20.
A constant feature of the initiation of cell division in a number of different cells is a rise in the intracellular level of calcium. The importance of cyclic nucleotides may depend on the way they interact with calcium. Cyclic AMP is apparently not an essential regulator of cell division but through its ability to modulate the intracellular level of calcium this cyclic nucleotide can exert profound effects on cell growth. In some systems (liver and salivary glands) cyclic AMP seems to augment the calcium signal whereas in others (lymphocytes and fibroblasts) it opposes calcium and can thus inhibit cell division. A rise in the level of calcium may be responsible for the parallel increase in cyclic GMP level which is usually associated with the stimulus to divide. An appealing feature of this calcium hypothesis is that it can account for the growth characteristics revealed by fibroblasts in tissue culture or embryonic cells during development. In both cases there is an initial phase of exponential growth during which I have proposed that the high level of calcium at mitosis persists into early G1 to provide the signal for the next division. In order to account for the sudden cessation of cell division at confluency, or at a specific stage during development, it is necessary to postulate that there is something different about the final mitosis which sets it apart from earlier mitoses. It is proposed that as the cells leave the last mitosis the level of calcium falls much more rapidly than it did during preceeding mitoses perhaps as a result of a more rapid rise in the level of cyclic AMP. This rapid rise in cyclic AMP level may have a dual function. Not only will it lower the level of calcium thus preventing further division, but it may also stimulate differentiation. Many of the embryonic cells which differentiate into specialized cells (lymphocytes, liver, salivary gland) retain the ability to divide if provided with appropriate stimuli. Although the nature of these stimuli vary considerably, they all seem to act by elevating the intracellular level of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号