首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various types of experimental hyperlactatemia were induced in the normal anesthetized dog, and the changes in insulin secretion were measured in the pancreatico-duodenal vein. Hyperlactatemia was induced in the absence or in the presence of an infusion of sodium dichloroacetate (DCA), which activates pyruvate dehydrogenase. 1. Exogenous hyperlactatemia: The infusion of sodium L(+)lactate resulted in a strong increase in blood lactate level which was accompanied by a significant increase in the insulin output from the pancreatico-duodenal vein. The administration of DCA did not counteract the increase in lactate level and did not modify insulin output either. 2. Endogenous hyperlactatemia: This was induced either by pharmacological means: the subcutaneous injection of an antidiabetic biguanide, phenformin (20 mg/kg), or by physiological means: intense muscular work. In both cases an increase in the lactate level and in insulin output was recorded. The administration of DCA suppressed the hyperlactatemia and counteracted the increase in insulin output. These results show that there is a relationship between lactate level and insulin secretion, and give evidence for a role of endogenous lactate in the regulation of insulin secretion.  相似文献   

2.
VIP levels were measured by radioimmunoassay in peripheral venous blood of conscious dogs. Bolus injections of the dopamine agonists apomorphine, 0.05 mg/kg, and bromocriptine, 0.2 mg/kg, were found to increase VIP levels from approximately 5 pmol/l to 150 pmol/l. The release responses were abolished by pretreatment with dopamine antagonists (haloperidol 0.1 mg/kg or halopemid 0.1 mg/kg) and by hexamethonium (1 mg/kg) a blocker of ganglionic transmission. Vagotomy did not inhibit the dopamine agonist induced output of VIP. Vagal activation by means of feeding or insulin hypoglycemia caused only minor rises of VIP levels (5-10 pmol/l). It is concluded that dopamine agonists stimulate the release of VIP from populations of neurons other than those affected by vagal and sympathetic activation. Possible sites of action for the VIP releasing effect exerted by dopamine agonists are discussed. Furthermore, it is suggested that some of the peripheral effects exerted by dopaminergic drugs are exerted via a previous release of VIP.  相似文献   

3.
On the isolated perfused rat pancreas phenformin at high concentrations (10 mg/1, 50 mg/1 and 100 mg/1) provokes an increase of the insulin and lactate output in the effluent liquid. In no case is glucagon secretion modified by this substance. There exists a statistically significant correlations between the increase in insulin output and the increase in lactate output induced by phenformin.  相似文献   

4.
In the anesthetized rat, the intraperitoneal injection of 40 mg/kg sodium difluoroacetate (DFA), an activator of the pyruvate dehydrogenase, counteracted the hyperlactatemia induced by a high dose of phenformin (40 mg/kg) injected concomitantly. In the normal conscious dog, the administration of 150 mg/kg by gastric intubation decreased the blood lactate and pyruvate levels; however, this effect was less marked than that produced by the same dose of sodium dichloroacetate (DCA).  相似文献   

5.
Intraperitoneal injection of choline (40, 80 or 120 mg/kg) produced a dose-dependent increase in serum glucose and choline levels in rats. The increases in serum glucose and choline were associated with an increase of serum insulin as well as plasma levels of epinephrine and norepinephrine. The increases in serum glucose and plasma catecholamine concentrations induced by choline (120 mg/kg) were blocked by pretreatment with the ganglionic nicotinic receptor antagonist hexamethonium (15 mg/kg), but were not affected by pretreatment with atropine (5 mg/kg). The choline-induced rise in serum insulin was blocked by pretreatment with atropine and with hexamethonium each. The increase in serum glucose evoked by choline (120 mg/kg) was blocked by alpha-adrenoceptor blockade and bilateral adrenalectomy each. Blockade of beta-adrenoceptor by propranolol or chemical sympathectomy by 6-hydroxydopamine failed to alter the hyperglycemic response to choline. These results show that choline, a precursor of the neurotransmitter acetylcholine, increases serum glucose and insulin levels. The effect of choline on serum insulin is mediated by both muscarinic and nicotinic acetylcholine receptors, whereas the effect of choline on serum glucose is mediated solely by nicotinic receptors. The stimulation of adrenal medullary catecholamine release and subsequent activation of alpha-adrenoceptors apparently mediates the hyperglycemic effect of choline.  相似文献   

6.
This paper describes an inhibitory effect of propranolol on insulin secretion in rats with pancreatic islet cell tumors which have been induced by streptozotocin (65 mg/kg body weight) and nicotinamide (500 mg/kg). Following glucose ingestion (3 g/kg), propranolol (4 mg/kg) was injected into the tumor-bearing rats. Plasma insulin decreased paradoxically despite an increase in blood glucoses. In contrast, propranolol did not suppress insulin secretion in normal rats. The drug was found to have no effect on glucagon secretion in either experimental or control animals during glucose load. This may suggest that the experimentally induced insulinoma in hypersensitive to propranolol for inhibiting insulin secretion.  相似文献   

7.
Phenformin at high doses (10 mg/l, 50 mg/l, and 100 mg/l) increased the insulin and lactate output rates by the isolated perfused rat pancreas. Glucagon secretion was not modified. There was a statistically significant correlation between the increase in insulin and lactate output rates induced by phenformin. Intra-pancreatic L (+) lactate concentrations induced by phenformin were in the range of sodium L (+) lactate concentrations which experimentally stimulated insulin secretion by the same preparation. Thiamin pyrophosphate and sodium dichloroacetate, which promote the aerobic metabolism of pyruvate, opposed the phenoformin induced increase in lactate output by the isolated perfused rat pancreas and provoked as well a decrease in insulin release. These results suggest that the increase in insulin secretion following the administration of phenformin at high concentrations can be explained, to a large extent, by the increase in the production of lactate ions.  相似文献   

8.
The present study was carried out to determine whether an increase in the pancreatic immunoreactive glucagon (IRG) secretion during the acute phase of insulin-induced hypoglycemia depends on circulating catecholamines of adrenal origin. Hypoglycemia was induced by a bolus insulin injection (0.15 IU/kg, i.v.) in dogs anesthetized with sodium pentobarbital (35 mg/kg, i.v.). Plasma aortic epinephrine (E) and norepinephrine (NE) concentrations increased significantly 30 min after the injection of insulin. At this time point, a functional adrenalectomy (diversion of bilateral adrenal venous blood from the systemic circulation) was performed for 5 min. The increased aortic E and NE concentrations significantly decreased reaching, within 5 min, a level below the corresponding preinjection control value. The basal output of pancreatic IRG (6.58 +/- 1.12 ng/min, n = 6) significantly increased (24.93 +/- 2.77 ng/min, p less than 0.05, n = 6) 30 min after insulin injection. During the functional adrenalectomy, the increased pancreatic IRG output diminished rapidly, within 5 min, to approximately 50% (11.73 +/- 3.19 ng/min, p less than 0.05, n = 6) of the value observed 30 min after insulin administration. In the other group of dogs receiving sham adrenalectomy, the increased aortic E and NE concentrations and pancreatic IRG output following insulin injection remained elevated above the levels observed immediately before the sham adrenalectomy. The net decrease in IRG output during the adrenalectomy was significant (p less than 0.05) compared with the corresponding net IRG output observed in the sham group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In mice, eNOS (endothelial nitric oxide synthase) maintains in vivo pancreatic secretory responses to carbachol or cholecystokinin octapeptide (CCK-8), maintains insulin sensitivity, and modulates pancreatic microvascular blood flow (PMBF). eNOS(-/-) mice are insulin resistant, and their exocrine pancreatic secretion is impaired. We hypothesized that the reduced exocrine pancreatic secretion in eNOS(-/-) mice is due to insulin resistance or impaired PMBF. To test this hypothesis, we gave eNOS(-/-) and wild-type (WT) mice pioglitazone (20 or 50 mg.kg(-1).day(-1)), an insulin-sensitizing peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activator, and measured pancreatic protein secretion evoked by CCK-8 (160 pmol.kg(-1).h(-1), a maximal stimulus). We also measured insulin resistance, serum glucose, C-peptide, insulin, pancreatic RNA digestive enzyme expression, and PMBF (microsphere technique). In WT mice, pioglitazone did not increase CCK-8-stimulated protein output over baseline. In eNOS(-/-) mice, however, pioglitazone substantially increased the low CCK-8-stimulated protein output that is characteristic of these mutant mice (P < 0.005). Pioglitazone abolished the CCK-8-evoked hyperinsulinemia (P < 0.005) and increased insulin sensitivity of eNOS(-/-) mice (P < 0.05), the latter based on hyperinsulinemic-euglycemic clamp studies. Pioglitazone had no effect on PMBF or pancreas mRNA expression of insulin or digestive enzymes. We conclude that in hyperinsulinemic eNOS(-/-) mice, a nonobese model of insulin resistance relevant to diabetes mellitus and possibly chronic pancreatitis, reduced pancreatic secretion is caused, at least in part, by insulin resistance. Insulin-sensitizing PPAR-gamma agonists such as pioglitazone may thus simultaneously correct endocrine and exocrine pancreatic disorders.  相似文献   

10.
Ginsenoside Rh2, one of the ginsenosides contained in the Panax ginseng root, was employed to screen the effect on insulin resistance of rats induced by a diet containing 60% fructose. Single intravenous injection of ginsenoside Rh2 decreased the plasma glucose concentrations in 60 minutes in a dose-dependent manner from 0.1 mg/kg to 1 mg/kg in rats with insulin resistance induced by fructose-rich chow. Repeated intravenous injection of ginsenoside Rh2 (1 mg/kg per injection, 3 times daily) into rats which received fructose-rich chow for 3 consecutive days decreased the value of glucose-insulin index, the product of the areas under the curve of glucose and insulin during the intraperitoneal (i.p.) glucose tolerance test. This means that ginsenoside Rh2 has an ability to improve insulin action on glucose disposal. The plasma glucose lowering action of tolbutamide, induced by the secretion of endogenous insulin, is widely used to characterize the formation of insulin resistance. Time for the loss of plasma glucose lowering response to tolbutamide (10 mg/kg, i.p.) in rats during insulin resistance induction by fructose-rich chow was also markedly delayed by the repeated treatment of ginsenoside Rh2, as compared to the vehicle-treated control. Thus, the repeated treatment of ginsenoside Rh2 delayed the development of insulin resistance in high fructose feeding rats. Increase of insulin sensitivity by ginsenoside Rh2 was further identified using the plasma glucose lowering action of exogenous insulin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Repeated injection of ginsenoside Rh2 at the same dosing (1 mg/kg, 3 times daily) into STZ-diabetic rats for 10 days made an increase of the responses to exogenous insulin. Taken together, it can be concluded that ginsenoside Rh2 has an ability to improve insulin sensitivity and it seems suitable to use ginsenoside Rh2 as an adjuvant for diabetic patients and/or the subjects wishing to increase insulin sensitivity.  相似文献   

11.
Hepatic insulin sensitizing substance (HISS) action accounts for 55% of the glucose disposal effect of a bolus of insulin in the fed state. To determine the effect of continuous versus pulsatile insulin delivery on HISS action in male Sprague-Dawley rats, insulin sensitivity was assessed using the rapid insulin sensitivity test (RIST) before and after a continuous, pulsatile, or bolus insulin (60 mU/kg i.v.) delivery. There was a significant difference in the RIST index after a continuous insulin infusion (247.9 mg/kg before, 73.2 mg/kg after) but not after 3 pulses where insulin action returned to baseline between pulses (211.6 mg/kg before, 191.0 mg/kg after) or single bolus (205.8 mg/kg before, 189.9 mg/kg after) insulin infusion. If a 3-pulse infusion was timed so that insulin action did not return to baseline between pulses, HISS action was suppressed. Continuous insulin infusion (10-30 min) showed progressive postinfusion blockade of HISS action. To maintain HISS-dependent insulin action, continuous insulin infusions should be avoided.  相似文献   

12.
The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta E) and immunoreactive insulin (IRI) was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) 3 days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for 3 days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindole acetic acid (5-HIAA) while it caused significant increase and decrease in brain beta E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta E and insulin regardless of the availability of pancreatic insulin.  相似文献   

13.
We examined the effects of anesthetic, age, and strain on oral glucose tolerance tests (OGTT, 1 g/kg body weight) and intraperitoneal glucose tolerance tests (IPGTT, 2 g/kg body weight) in spontaneously hypertensive (SH) and Wistar rats. Pentobarbital anesthesia caused an elevation in basal glucose and insulin levels in Wistar rats at 9 and 16 weeks of age and in SH rats at 9 weeks. Anesthesia increased the insulin output during an OGTT in both strains of rats while glucose was unchanged. Anesthesia reduced the insulin sensitivity index calculated from the OGTT but not from the IPGTT data. The age of the rats (9-11 vs. 16-18 weeks) had no effect on the basal glucose or insulin levels, but older Wistar rats had a greater insulin output following oral glucose and older SH rats had a greater insulin output following intraperitoneal glucose. On the basis of the insulin sensitivity index, SH rats were clearly more insulin resistant than age-matched Wistar rats. The SH rats also had higher basal insulin levels, as well as higher insulin output, following both glucose challenges. In summary, SH rats are more insulin resistant than Wistar rats, and anesthesia, which elevated basal glucose and insulin levels and increased the insulin output in response to a glucose challenge, may increase insulin resistance.  相似文献   

14.
Ruan CT  Lam SH  Chi TC  Lee SS  Su MJ 《Phytomedicine》2012,19(8-9):719-724
Diabetes mellitus (DM) often leads to disability from vascular complications and neurological complications. Tinospora crispa has been widely used in Asia and Africa as a remedy for diabetes and other diseases. In this study, we investigated the hypoglycemic actions of borapetoside C isolated from T. crispa, and the mechanisms underlying its actions. Acute treatment with borapetoside C (5mg/kg, i.p.) attenuated the elevated plasma glucose induced by oral glucose in normal and type 2 DM (T2DM) mice. Compared to the effect of injected insulin (0.5 IU/kg), borapetoside C caused a more prominent increase of glycogen content in skeletal muscle of T2DM mice, but a less increase in type 1 DM (T1DM) mice. Combined treatment of a low dose borapetoside C (0.1mg/kg, i.p.) plus insulin enhanced insulin-induced lowering of the plasma glucose level and insulin-induced increase of muscle glycogen content. Continuous treatment with 5mg/kg borapetoside C (twice daily) for 7 days increased phosphorylation of insulin receptor (IR) and protein kinase B (Akt) as well as the expression of glucose transporter-2 (GLUT2) in T1DM mice. Combined treatment of a low dose borapetoside C (0.1mg/kg, twice daily) plus insulin for 7 days enhanced insulin-induced IR and Akt phosphorylation and GLUT2 expression in the liver of T1DM mice. This study proved that borapetoside C can increase glucose utilization, delayed the development of insulin resistance and enhanced insulin sensitivity. The activation of IR-Akt-GLUT2 expression and the enhancement of insulin sensitivity may contribute to the hypoglycemic action of borapetoside C in diabetic mice.  相似文献   

15.
Linagliptin (TRADJENTA?) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3-4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67-89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (-16.5% to -20.3%; P<0.01) or 30 mg/kg/day (-14.5% to -26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic-hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity.  相似文献   

16.
1. Plasma glucose and insulin responses to bombesin were examined in 12-15-week-old 12 hr fasted lean and genetically obese hyperglycaemic (ob/ob) mice. 2. Bombesin (1 mg/kg ip) produced a prompt but transient increase of plasma insulin in lean mice (maximum increase of 50% at 5 min), and a more slowly generated but protracted insulin response in ob/ob mice (maximum increase of 80% at 30 min). Plasma glucose concentrations of both groups of mice were increased by bombesin (maximum increases of 40 and 48% respectively in lean and ob/ob mice at 15 min). 3. When administered with glucose (2 g/kg ip), bombesin (1 mg/kg ip) rapidly increased insulin concentrations of lean and ob/ob mice (maximum increases of 39 and 63% respectively at 5 min). Bombesin did not significantly alter the rise of plasma glucose after exogenous glucose administration to these mice. 4. The results indicate that bombesin exerts an insulin-releasing effect in lean and ob/ob mice. The greater insulin-releasing effect in ob/ob mice renders bombesin a possible component of the overactive entero-insular axis in the ob/ob mutant, especially if it acts within the islets as a neurotransmitter or paracrine agent.  相似文献   

17.
Streptozotocin-induced diabetic rats have excessively pentagastrin-simulated acid output in which insulin seems to attenuate rather than further stimulate acid output. The aim of this study was to determine the insulin impact on pentagastrin-stimulated acid output of diabetic and non-diabetic rats to resolve whether an attenuated effect does exist. Diabetic rats were induced by the streptozotocin i.v. injection four days before acid study. Some streptozotocin-treated rats additionally received daily insulin (2.4 IU/kg) injection. Using an autotitrator, acid output was measured every five minutes by the titration of gastric perfusate. Basal output was collected for 45 min before the 90-min pentagastrin infusion (0.89 microg/kg/min). Plasma gastric inhibitory polypeptide (GIP) levels were measured. Both doses (0.067 and 0.133 IU/kg/min) of insulin infusion resulted in stimulated acid output in normal rats. The subsequent insulin infusion (0.133 IU/kg/min) for non-diabetic rats undergoing pentagastrin-treatment suppressed their stimulated acid output almost down to the basal level. Pentagastrin-stimulation led to the excessively increased acid output of diabetic rats throughout the whole infusion period (P < 0.01). Correction of hyperglycemia with insulin for diabetic rats normalized the stimulated acid output. Measured basal and stimulated plasma GIP levels of those diabetic rats during acid stimulation remained higher, regardless of insulin treatment (P < 0.05). Our results suggest that insulin has the ability to attenuate pentagastrin-stimulated acid output in rats, whereas GIP is not involved in this attenuation. This effect appears to be responsible for the excessive acid output of diabetic rats undergoing pentagastrin stimulation.  相似文献   

18.
This work was designed to study the effects of sodium 2-chloropropionate (2CP) alone or combined with insulin, in vitro, on glucagon secretion from pancreas isolated from rats, made diabetic by streptozotocin (66 mg/kg i.p.). The pancreata were perfused with a physiological solution containing 2.8 mM glucose (0.5 g/l) and glucagon secretion was stimulated by an arginine infusion (5 mM) for 30 min. When 2CP (1 mM) and/or insulin (4 IU/l) were applied, they were infused from the start of the organ perfusion. In the presence of glucose alone, a marked decrease in glucagon output was observed in diabetic rat pancreas. The arginine perfusion induced a biphasic glucagon secretion both in normal and diabetic rat pancreas; this response was however clearly reduced in diabetic rat pancreas. In diabetic rat pancreas, the infusion of either 2CP or insulin had no effect on glucagon output in presence of glucose alone, nor did it modify the response to arginine. In contrast, the combined infusion of insulin and 2CP induced different effects depending on the conditions: whereas in presence of glucose alone it restored a glucagon output close to that recorded in normal rat pancreas, it did not modify the response to arginine.  相似文献   

19.
Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.  相似文献   

20.
Rats turned diabetic by treatment with alloxan exhibit a significant reduction in serosal mast cell numbersin parallel with decreased insulin levels in the plasma. Our aim was to investigate the putative involvement of endogenous glucocorticoid hormone in this phenomenon. The findings indicated that rats treated with alloxan responded with an increase in levels of serum corticosterone concomitantly with decreased mast cell numbers in the pleural space. We found that either surgical bilateral adrenalectomy or pretreatment with the steroid antagonist RU 486 (20 mg/kg, i.p.) impaired the drop in pleural mast cell counts in alloxinated rats. Administration of insulin (15 U/kg) prevented the increase in corticosterone levels and restored pleural mast cell levels in diabetic animals. In addition, treatment of naive rats with corticosterone (0.5 mg/kg, s.c.) or dexamethasone (0.1 mg/kg, s.c.), for 3 consecutive days, led to a reduction in the number of mast cells recovered from the pleural cavity as noted in diabetic animals. In contrast, insulin reduced serum corticosterone levels and induced a significant elevation in pleural mast cell numbers in naive rats. We conclude that there is a causative relationship between increased levels of glucocorticoids and down-regulation of mast cell numbers associated with the diabetic state, both phenomena clearly sensitive to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号