首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EBV is associated with systemic lupus erythematosus (SLE), but how it might contribute to the etiology is not clear. Since EBV-encoded latent membrane protein 2A (LMP2A) interferes with normal B cell differentiation and function, we sought to determine its effect on B cell tolerance. Mice transgenic for both LMP2A and the Ig transgene 2-12H specific for the ribonucleoprotein Smith (Sm), a target of the immune system in SLE, develop a spontaneous anti-Sm response. LMP2A allows anti-Sm B cells to overcome the regulatory checkpoint at the early preplasma cell stage by a self-Ag-dependent mechanism. LMP2A induces a heightened sensitivity to TLR ligand stimulation, resulting in increased proliferation or Ab-secreting cell differentiation or both. Thus, we propose a model whereby LMP2A induces hypersensitivity to TLR stimulation, leading to activation of anti-Sm B cells through the BCR/TLR pathway. These data further implicate TLRs in the etiology of SLE and suggest a mechanistic link between EBV infection and SLE.  相似文献   

2.
The B-lymphotropic Epstein-Barr virus (EBV) encodes two isoforms of latent membrane protein 2 (LMP2), LMP2A and LMP2B, which are expressed during latency in B cells. The function of LMP2B is largely unknown, whereas LMP2A blocks B-cell receptor (BCR) signaling transduction and induction of lytic EBV infection, thereby promoting B-cell survival. Transfection experiments on LMP2B in EBV-negative B cells and the silencing of LMP2B in EBV-harboring Burkitt's lymphoma-derived Akata cells suggest that LMP2B interferes with the function of LMP2A, but the role of LMP2B in the presence of functional EBV has not been established. Here, LMP2B, LMP2A, or both were overexpressed in EBV-harboring Akata cells to study the function of LMP2B. The overexpression of LMP2B increased the magnitude of EBV switching from its latent to its lytic form upon BCR cross-linking, as indicated by a more-enhanced upregulation and expression of EBV lytic genes and significantly increased production of transforming EBV compared to Akata vector control cells or LMP2A-overexpressing cells. Moreover, LMP2B lowered the degree of BCR cross-linking required to induce lytic EBV infection. Finally, LMP2B colocalized with LMP2A as demonstrated by immunoprecipitation and immunofluorescence and restored calcium mobilization upon BCR cross-linking, a signaling process inhibited by LMP2A. Thus, our findings suggest that LMP2B negatively regulates the function of LMP2A in preventing the switch from latent to lytic EBV replication.  相似文献   

3.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed on the membranes of B lymphocytes and blocks B-cell receptor (BCR) signaling in EBV-transformed B lymphocytes in vitro. The phosphotyrosine motifs at positions 74 or 85 and 112 within the LMP2A amino-terminal domain are essential for the LMP2A-mediated block of B-cell signal transduction. In vivo studies indicate that LMP2A allows B-cell survival in the absence of normal BCR signals. A possible role for Akt in the LMP2A-mediated B-cell survival was investigated. The protein kinase Akt is a crucial regulator of cell survival and is activated within B lymphocytes upon BCR cross-linking. LMP2A expression resulted in the constitutive phosphorylation of Akt, and this LMP2A effect is dependent on phosphatidylinositol 3-kinase activity. In addition, recruitment of Syk and Lyn protein tyrosine kinases (PTKs) to tyrosines 74 or 85 and 112, respectively, are critical for LMP2A-mediated Akt phosphorylation. However, the ability of LMP2A to mediate a survival phenotype downstream of Akt could not be detected in EBV-negative Akata cells. This would indicate that LMP2A is not responsible for EBV-dependent Burkitt's lymphoma cell survival.  相似文献   

4.
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several human malignancies. The EBV protein latent membrane protein 2A (LMP2A) promotes viral latency in memory B cells by interfering with B cell receptor signaling and provides a survival signal for mature B cells that have lost expression of surface immunoglobulin. The latter function has suggested that LMP2A may enhance the survival of EBV-positive tumors. EBV is associated with several T cell malignancies and, since LMP2A has been detected in several of these disorders, we examined the ability of LMP2A to transmit signals and interfere with T cell receptor signaling in T cells. We show that LMP2A is tyrosine-phosphorylated in Jurkat TAg T cells, which requires expression of the Src family tyrosine kinases, Lck and Fyn. Lck and Fyn are recruited to the tyrosine-phosphorylated Tyr112 site in LMP2A, whereas phosphorylation of an ITAM motif in LMP2A creates a binding site for the ZAP-70/Syk tyrosine kinases. LMP2A also associates through its two PPPPY motifs with AIP4, a NEDD4 family E3 ubiquitin ligase; this interaction results in ubiquitylation of LMP2A and serves to regulate the stability of LMP2A and LMP2A-kinase complexes. Furthermore, stable expression of LMP2A in Jurkat T cells down-regulated T cell receptor levels and attenuated T cell receptor signaling. Thus, through recruiting tyrosine kinases involved in T cell receptor activation, LMP2A may provide a survival signal for EBV-positive T cell tumors, whereas LMP2A-associated NEDD4 E3 ligases probably titer the strength of this signal.  相似文献   

5.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is important for maintenance of latency in infected B lymphocytes. Through its immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs, LMP2A is able to block B-cell receptor (BCR) signaling, bind BCR-associated kinases, and manipulate the turnover of itself and these kinases via a PY-mediated interaction with the Nedd4 family of ubiquitin ligases. In epithelial cells, LMP2A has been shown to activate the phosphatidylinositol 3'-OH kinase/Akt and beta-catenin signaling pathways. In the present study, the biological consequences of LMP2A expression in the normal human foreskin keratinocyte (HFK) cell line were investigated and the importance of the ITAM and PY motifs for LMP2A signaling effects in HFK cells was ascertained. The ITAM was essential for the activation of Akt by LMP2A in HFK cells, while both the ITAM and PY motifs contributed to LMP2A-mediated accumulation and nuclear translocation of the oncoprotein beta-catenin. LMP2A inhibited induction of differentiation in an assay conducted with semisolid methylcellulose medium, and the PY motifs were critical for this inhibition. LMP2A is expressed in the EBV-associated epithelial malignancies nasopharyngeal carcinoma and gastric carcinoma, and these data indicate that LMP2A affects cellular processes that likely contribute to carcinogenesis.  相似文献   

6.
A significant percentage of the population latently harbors Epstein-Barr virus (EBV) in B cells. One EBV-encoded protein, latent membrane protein 2A (LMP2A), is expressed in tissue culture models of EBV latent infection, in human infections, and in many of the EBV-associated proliferative disorders. LMP2A constitutively activates proteins involved in the B-cell receptor (BCR) signal transduction cascade and inhibits the antigen-induced activation of these proteins. In the present study, we investigated whether LMP2A alters B-cell receptor signaling in primary B cells in vivo and in vitro. LMP2A does not inhibit antigen-induced tolerance in response to strong stimuli in an in vivo tolerance model in which B cells are reactive to self-antigen. In contrast, LMP2A bypasses anergy induction in response to low levels of soluble hen egg lysozyme (HEL) both in vivo and in vitro as determined by the ability of LMP2A-expressing HEL-specific B cells to proliferate and induce NF-kappaB nuclear translocation after exposure to low levels of antigen. Furthermore, LMP2A induces NF-kappaB nuclear translocation independent of BCR cross-linking. Since NF-kappaB is required to bypass tolerance induction, this LMP2A-dependent NF-kappaB activation may complete the tolerogenic signal induced by low levels of soluble HEL. Overall, the findings suggest that LMP2A may not inhibit BCR-induced signals under all conditions as previously suggested by studies with EBV immortalized B cells.  相似文献   

7.
Latent membrane protein 2A (LMP2A) is one of only two viral proteins expressed during latent Epstein-Barr virus (EBV) infections in human peripheral B cells. LMP2A blocks B-cell receptor (BCR) signal transduction in vitro by modulation of the Syk and Lyn protein tyrosine kinases. Five genetically unique LMP2A transgenic mouse lines (EmuLMP2A) with B-cell lineage expression of LMP2A were generated in this study to analyze the importance of LMP2A expression in vivo. These animals can be grouped into EmuLMP2A(BCR+) (TgB, Tg6, and TgC) and EmuLMP2A(BCR-) (Tg7 and TgE) lines based on B-cell phenotype. LMP2A expression in bone marrow cells of EmuLMP2A(BCR-) lines was associated with a bypass of normal B-lymphocyte developmental checkpoints inasmuch as immunoglobulin light-chain gene rearrangement occurred in the absence of complete immunoglobulin heavy-chain gene rearrangement. The resulting BCR-negative B cells were able to exit the bone marrow and colonize peripheral lymphoid organs. LMP2A expression in EmuLMP2A(BCR+) lines was not associated with altered B-cell development in a genetically wild-type background. When crossed into a recombinase activating null (RAG(-/-)) genetic background, LMP2A expression in either RAG(-/-) EmuLMP2A(BCR+) or RAG(-/-) EmuLMP2A(BCR-) animals was able to provide a survival signal to BCR-negative splenic B cells. Additionally, bone marrow cells from all EmuLMP2A animals were able to proliferate in response to interleukin-7-dependent developmental signals in vitro. These studies illustrate that LMP2A can provide a survival signal to BCR-negative B cells in two different groups of EmuLMP2A transgenic mice.  相似文献   

8.
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.  相似文献   

9.
10.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed constitutively in lipid rafts in latently infected B lymphocytes. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids selective for specific protein association. Lipid rafts have been shown to be necessary for B-cell receptor (BCR) signal transduction. LMP2A prevents BCR recruitment to lipid rafts, thereby abrogating BCR function. As LMP2A is palmitoylated, whether this fatty acid modification is necessary for LMP2A to localize to lipid rafts and for protein function was investigated. LMP2A palmitoylation was confirmed in latently infected B cells. LMP2A was found to be palmitoylated on multiple cysteines only by S acylation. An LMP2A mutant that was not palmitoylated was identified and functioned similar to wild-type LMP2A; unmodified LMP2A localized to lipid rafts, was tyrosine phosphorylated, was associated with LMP2A-associated proteins, was ubiquitinated, and was able to block calcium mobilization following BCR cross-linking. Therefore, palmitoylation of LMP2A is not required for LMP2A targeting to buoyant complexes or for function.  相似文献   

11.
Epstein-Barr virus (EBV) not only induces growth transformation in human B lymphocytes, but has more recently been shown to enhance B cell survival under suboptimal conditions where growth is inhibited; both effects are mediated through the coordinate action of eight virus-coded latent proteins. The effect upon cell survival is best recognized in EBV-positive Burkitt's lymphoma cell lines where activation of full virus latent gene expression protects the cells from programmed cell death (apoptosis). Here we show by DNA transfection into human B cells that protection from apoptosis is conferred through expression of a single EBV latent protein, the latent membrane protein LMP 1. Furthermore, we demonstrate that LMP 1 mediates this effect by up-regulating expression of the cellular oncogene bcl-2. The interplay between EBV infection and expression of this cellular oncogene has important implications for virus persistence and for the pathogenesis of virus-associated malignant disease.  相似文献   

12.
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors.  相似文献   

13.
14.
The Epstein-Barr virus (EBV) oncoprotein latent membrane protein 1 (LMP1) is thought to act as the major transforming protein in various cell types, by rerouting the tumor necrosis factor receptor family signaling pathway. Despite this implication in EBV-associated transformation of cells, LMP1 toxicity is a well-known but poorly studied feature, perhaps because it contradicts its role in transformation. We show that LMP1 physiological levels are very heterogeneous and that the highest levels of LMP1 correlate with Fas overexpression and spontaneous apoptosis in lymphoblastoid cell lines (LCLs). To understand the cytotoxic effect of LMP1 in LCLs, we cloned wild-type LMP1 into a doxycycline double-inducible episomal vector pRT-1, with a truncated version of NGFR as a surrogate marker of inducibility. We found that LMP1 overexpression induced apoptosis in LCL B cells, as shown by annexin V labeling, sub-G(1) peak, and poly(ADP ribose) polymerase cleavage. Knocking down Fas expression by small interfering RNA abolished LMP1-induced apoptosis. The absence of detectable levels of Fas ligand mRNA suggested a ligand-independent activation of Fas. LMP1 induced Fas overexpression with its relocalization in lipid raft microdomains of the membrane. Fas immunoprecipitation detected FADD (Fas-associated death domain protein) and caspase 8, suggesting a Fas-dependent formation of the death-inducing signaling complex. Caspases 8, 9, 3, and 7 were activated by LMP1. Caspase 8 activation was associated with BID cleavage and truncated-BID mitochondrial relocalization, consistent with type II apoptosis. Therefore, our results are in agreement with a model where LMP1-dependent NF-kappaB activation induces Fas overexpression and autoactivation that could overwhelm the antiapoptotic effect of NF-kappaB, revealing an ambivalent function of LMP1 in cell survival and programmed cell death.  相似文献   

15.
Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.  相似文献   

16.
EB病毒潜伏膜蛋白1基因对上皮细胞增殖的影响   总被引:1,自引:0,他引:1  
为了研究EB病毒潜伏膜蛋白1(LMP1)基因对上皮细胞增殖的影响,探索LMP1在上皮细胞肿瘤发生中所起的作用。用LMP1基因真核表达质粒转染人胚肾上皮细胞,检测了转染细胞中LMP1的表达,观察细胞在软琼脂中的集落形成能力、MTT吸收能力以及PCNA的表达情况。结果显示,被LMP1基因转染的细胞生长旺盛,能在软琼脂中形成多个集落,MTT吸收能力增强,PCNA的表达水平增高。因此认为LMP1基因能明显改变上皮细胞的生物学行为,促进细胞的生长、增殖和转化,使转染的上皮细胞获得肿瘤细胞的生长特征  相似文献   

17.
18.
Epstein-Barr virus (EBV) is associated with various malignancies, including epithelial cancers. In this study, we analyzed the effect of EBV infection on epithelial cells by using EBV-converted epithelial cells. In EBV-positive cells, the extracellular signal-regulated kinase (ERK) pathway is constitutively activated. Inhibition of ERK activity leads to reduced anoikis resistance; therefore, EBV-positive cells are more resistant to anoikis, a type of apoptosis induced by cell detachment, than are EBV-negative cells. Among the viral genes expressed in EBV-positive cells, the latent membrane protein 2A (LMP2A) is responsible for induction of ERK-mediated anoikis resistance, although the expression level of LMP2A is much lower in EBV-positive cells than in EBV-transformed B cells. Further analysis demonstrated that LMP2A downregulation of the proanoikis mediator Bim through proteasomal degradation is dependent on the immunoreceptor tyrosine-based activation motif (ITAM). These findings suggest that LMP2A-mediated ERK activation is involved in the generation of EBV-associated epithelial malignancies.  相似文献   

19.
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms.  相似文献   

20.
The relationship between EBV infection and sensitivity to death receptor (DR)-induced apoptosis is poorly understood. Using EBV- and EBV+ BJAB cells, we provide the first evidence that EBV can protect latently infected B cell lymphomas from apoptosis triggered through Fas or TRAIL receptors. Caspase 8 activation was impaired and cellular FLIP recruitment was enriched in death-inducing signaling complexes formed in EBV-infected BJAB cells relative to parent BJAB cells. Furthermore, latent membrane protein 1 expression alone could reduce caspase activation and confer partial resistance to DR apoptosis in BJAB cells. This protective effect was dependent on C-terminal activating region 2-driven NF-kappaB activation, which in turn up-regulated cellular FLIP expression in latent membrane protein 1+ BJAB cells. Thus, the ability of latent EBV to block DR apoptosis may help to ensure the survival of host cells during B cell differentiation, and contribute to the development of B cell lymphomas, especially in immunocompromised individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号