首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines the existence and pharmacological specificity of [3H]ketanserin binding in hypothalamus of juvenile rainbow trout. Hypothalamic membranes were incubated with [3H]ketanserin (selective 5HT2 antagonist) under several experimental conditions; reactions were terminated by filtration and bound radioactivity was counted by liquid scintillation spectroscopy. Tissue dilution experiments revealed that specific [3H]ketanserin binding (B(sp)) was tissue dependent; 1 hypothalamus equivalent per tube (1100 +/- 115 cpm/mg protein) was subsequently used throughout the rest of this study. In association experiments, B(sp) increased progressively with time, achieved equilibrium binding levels (1192 +/- 120 cpm/mg protein) within 80 min, and remained stable for at least 60 min thereafter; k(obs), and k(+1) were 0.032 and 0.048 min(-1) x nM(-1), respectively. In dissociation experiments, B(sp) completely dissociated within 20 min following addition of excess ketanserin; k(-1) and t1/2 were 0.0803 min(-1) and 8.7 min, respectively. B(sp) was saturable (2500 +/- 256 cpm/mg protein); Scatchard-calculated values for the equilibrium dissociation constant (K(D)) and capacity (Bmax) were 0.48 nM, and 125 fmol/mg protein, respectively. B(sp) was differentially displaced by structurally related competitors, with a rank order of potency of ketanserin = mianserin > ritanserin > serotonin (5HT) = spiperone > methiothepin mesylate > metergoline = DOI ((+/-)-2-5-dimethoxy-4-iodoamphetamine hyrobromide) > 2-methyl-5HT > alpha-methyl-5HT > 5HIAA (5-hydroxyindole acetic acid) = reserpine. These findings provide pharmacological evidence for the presence of a 5HT2-like receptor subtype in the trout hypothalamus.  相似文献   

2.
This article is part of a Special Issue “Parental Care”.There is significant variability in the behavioral responses displayed by naïve young and adult mice when first exposed to pups. This variability has been associated with differences in the expression of oxytocin receptors (OXTRs) in the brain in several species. Experiment I investigated the behavioral responses of juvenile, adolescent, and adult CB57BL/6 males and females when first exposed to pups. We found an age increase in maternal females (11% of juveniles, 20% of adolescents, and 50% of young adults), and infanticidal males (0% of juveniles, 30% of adolescents, 44.5% of young adults, and 100% of older adults). Experiment II investigated OXTR density in the brain of juvenile and adult mice. Our results revealed an age decline in the density of OXTR in several brain regions, including the lateral septum, cingulated and posterior paraventricular thalamic nucleus in both males and females. Adult females had higher OXTR density in the ventromedial nucleus/postero-ventral hypothalamus (VMH) and the accessory olfactory bulb (AOB), but lower density in the ventral region of the lateral septum (LSv) than juveniles. Males had lower OXTR density in the anterior olfactory area (AOA) compared to juveniles. No age or sex differences were found in the medial preoptic area, and amygdaloid nuclei, among other brain regions. This study suggests that 1) maturation of parental and infanticidal behavioral responses is not reached until adulthood; 2) the pattern of development of OXTR in the mouse brain is unique, region specific, and differs from that observed in other rodents; 3) either up or down regulation of OXTR in a few brain regions (VMH/AOB/LSv/AOA) might contribute to age or sex differences in parental or infanticidal behavior.  相似文献   

3.
Intact male rats were tested on two successive weekly tests with females to determine their level of sexual activity. Nuclear estrogen receptor content was measured in specific brain regions of individual sexually responsive and sexually nonresponsive males. Sexually nonresponsive male rats had significantly reduced nuclear estrogen receptor levels in the preoptic area compared to sexually responsive males. Sexually active males did not differ from inactive males in nuclear estrogen receptors in the medialbasal hypothalamus.  相似文献   

4.
We have shown previously that acute (1 to 6 h) and prolonged (1 to 5 days) exposure of rainbow trout to naphthalene resulted in decreased plasmatic cortisol and 17-beta-estradiol levels. In order to elucidate the mechanisms through which naphthalene might disrupt endocrine regulation, the present study investigated whether brain monoaminergic neurotransmitters are altered by the action of this polycyclic aromatic hydrocarbon. In a first experiment, immature rainbow trout were injected with vegetable oil alone or containing naphthalene (10 and 50 mg/kg, i.p.), and sacrificed 1, 3 and 6 h after treatment. In a second experiment, slow-coconut oil implants alone or containing naphthalene (doses of 10 and 50 mg/kg) were i.p. located and fish sacrificed 1, 3 and 5 days after treatment. Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and noradrenaline (NA) were measured in several brain regions by HPLC. The results show that short-term naphthalene increases DA and 5-HT contents in hypothalamus and telencephalon, but differentially alter contents of the acid metabolites. Implants with naphthalene reduced DA content in hypothalamus and preoptic region but increased in telencephalon. 5-HT metabolism was decreased in hypothalamus, preoptic region, pituitary and brain stem after 3 to 6 days of treatment. In addition, the levels of NA were increased in hypothalamus and telencephalon after acute treatment and in hypothalamus and preoptic area after several days of exposure to naphthalene. These data suggest that brain neurotransmitter systems are sensitive to polycyclic aromatic hydrocarbons and could represent a target of the naphthalene-induced neuroendocrine disruption.  相似文献   

5.
Light-microscopic immunohistochemical study of the brain with use of the unlabeled antibody to gonadotropin-releasing hormone (GnRH) was carried out on sexually mature individuals of the sturgeon of stage IV of gonadal maturity (before spawning). The brain was examined as a whole; the GnRH-immunoreactive (GnRH-IR) structures were revealed in the olfactory bulb, forebrain, hypothalamus, and neuropituitary. In the fish studied at prespawning period, the highest density of GnRH-IR structure was noticed in the ventral region of forebrain, preoptic region, and anterior neuropituitary. The GnRH-IR cells of the forebrain ventral region, preoptic, and tuberal nuclei send their axons to the region of anterior neuropituitary, in which they contact vessels of the primary portal pituitary system. Thereby, the gonadotropin secretion regulation is performed by corresponding cells of adenopituitary. Rare GnRH-IR fibers in the posterior pituitary lobe contact the general circulation vessels. The dendrites of the GnRH-IR cells that we have revealed in the preoptic region and in the region of tuberal nucleus are located very close to the preoptic bay cavity and to the cerebral III ventricle, respectively. This indicates a possibility of secretion of the neurohormone into the cerebrospinal fluid.  相似文献   

6.
Levels of tryptophan (TP), serotonin (5-hydroxytryptamine, 5HT) and 5-hydroxyindoleacetic acid (5HIAA) have been determined in the brains of wild brook trout, Salvelinus fontinalis (Mitchill), and brown trout, Salmo trutta L., using high performance liquid chromatography with electrochemical detection. Immediately prior to spawning, adult female brook trout exhibit higher levels of 5HT in the brain than adult males, immature brook trout and immature brown trout. After spawning, the highest levels of TP are found in spent males, which also have higher levels of 5HT in the brain than spent females and immature brook trout. Immature brook trout exhibit higher levels of 5HIAA than prespawning adults. This difference disappears after the spawning season. Serum protein levels and condition factors are lower in spent female brook trout; however, haematocrit values for both sexes remain unchanged after spawning.  相似文献   

7.
O Naess 《Steroids》1976,27(2):167-185
The specific androgen receptors for testosterone (T) (1) and 5alpha-dihydrotestosterone (DHT) in the cytosol fraction of the hypothalamus, preoptic area and brain cortex of the rat have been characterized using electrophoresis and isoelectric focusing in polyacrylamide gels. After labeling of the cytosol fractions in vivo and in vitro we were able to demonstrate androgen-receptor complexes moving with an electrophoretic mobility (R(f) of 0.5 in 3.25% acrylamide gels containing 0.5% agarose and 10% glycerol. Polyacrylamide gel electrophoresis was used as a quantitative assay for androgen receptors in the tissues. The hypothalamus, preoptic area and brain cortex were found to possess a single class of high affinity binding sites for androgens and the dissociation constants (K(D) were estimated to be 3.4, 4.3 and 2.6 X 10 (-10M) respectively. The binding capacities were 3.7 (hypothalamus), 3.5 (preoptic area) and 1.8 X 10 (-15) (brain cortex) moles of high affinity binding sites per mg protein. Like other androgen-receptor complexes, the testosterone-receptor complexes of the hypothalamus, preoptic area and brain cortex were temperature labile, sulfhydryl dependent and revealed a very slow rate of dissociation at o degrees C (t1/2 greater than 36 hr). The receptors in all the tissues had an isoelectric point of 5.8. The steroid specificity of the cytoplasmic androgen receptors was tested in vitro by the competing efficiency of different unlabeled steroids for (3H)-testosterone binding. In the three tissues in investigation the following order of affinity was found: DHT greater than T greater than Cyproterone acetate greater than progesterone greater than androstenedione greater than 17beta-estradiol. Cortisol did not effect androgen binding significantly. Thus, the physiochemical characteristics of the cytoplasmic androgen receptors of the hypothalamus, preoptic area and brain cortex are very similar, if not identical, to those of the androgen receptors described in the anterior pituitary, ventral prostate, epididymis and testis.  相似文献   

8.
Testosterone and its metabolites masculinize the brain during a critical perinatal window, including the relative volume of sexually dimorphic brain areas such as the sexually dimorphic nucleus of the preoptic area (SDN), which is larger in males than females. Serotonin (5HT) may mediate this hormone action, since 5HT given during the second week of life decreases (i.e., feminizes) SDN volume in males and testosterone‐treated females. Although previous work indicates that the 5HT2A/2C receptor is sufficient to induce feminization, it is unclear whether other serotonin receptors are required and which subpopulation(s) of SDN cells are specifically organized by 5HT. Therefore, we injected male and female Sprague‐Dawley rat pups with saline, a nonselective 5HTR agonist, a 5HT2A/2C agonist, or a 5HT2A/2C antagonist over several timecourses in early life, and measured the Nissl‐SDN as well as a calbindin+ subdivision of the SDN, the CALB‐SDN. When examined on postnatal day 18 or early adulthood, the size of the Nissl‐SDN was feminized in males treated with any of the serotonergic drugs, eliminating the typical sex difference. In contrast, the sex difference in CALB‐SDN size was maintained regardless of serotoninergic drug treatment. This pattern suggests that although gonadal hormones shape the whole SDN, individual cellular phenotypes respond to different intermediary signals to become sexually dimorphic. Specifically, 5HT mediates sexual differentiation of non‐calbindin population(s) within the SDN. The results also caution against using measurement of the CALB‐SDN in isolation, as the absence of an effect on the CALB‐SDN does not preclude an effect on the overall nucleus. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1241–1253, 2016  相似文献   

9.
M G Hadfield  C Milio 《Life sciences》1989,45(26):2637-2644
Caffeine (100 and 200 mg/kg, 30 min., i.p.) selectively altered the regional utilization of monoamines in the brains of mice. This depended upon the specific neurotransmitter and metabolite studied. Caffeine increased serotonin (5HT) utilization a dramatic ten-fold in the OB but decreased 5HT utilization in the HT. No 5HT changes were seen in other brain regions. Caffeine markedly increased norepinephrine (NE) utilization in the olfactory bulbs (OB), olfactory tubercles (OT), prefrontal cortex (PC), amygdala (AMY), hypothalamus (HT) and hippocampus (HC). Caffeine increased dopamine (DA) utilization in the OB, OT, PC, septum (SP), HT and thalamus (TH) but by various metabolic routes. The selective regional alterations in monoamine utilization produced by caffeine may be relevant to caffeine's central stimulatory effects. Limbic structures are predominantly involved. These changes may have important clinical and research implications. For example, the profound effect of caffeine on OB monoamines indicates that it may serve as a meaningful tool in olfactory research, including the bulbectomy model. Caffeine may also be useful in other limbic system behavioral models.  相似文献   

10.
3α-Hydroxysteroid Oxidoreductase in Rat Brain   总被引:2,自引:2,他引:0  
Abstract: We describe a simple procedure for the microassay of 3α-hydroxysteroid oxidoreductase in homogenates of rat brain. This enzyme converts dihydrotestosterone to 3α-androstandiol. We have mapped the distribution of the enzymatic activity in 14 regions of the rat brain. The highest activities were observed in homogenates of olfactory bulb (51/nmol/mg protein/h) and olfactory tubercle (29 nmol/mg protein/h). Substantially lower values were seen in the other brain regions, including thalamus, caudate nucleus, frontal cortex, hippocampus, hypothalamus, and preoptic area (6–20 nmol/mg protein/ h).  相似文献   

11.
12.
Human β-endorphin (15 μg) administered intracisternally increased concentrations of serotonin (5HT) and its metabolite, 5-hydroxyindoleacetic. acid (5-HIAA), in brain stem and hypothalamus and decreased 5-HIAA concentrations in hippocampus. These data are compatible with the hypothesis that β-endorphin increases 5HT turnover in brain stem and hypothalamus and decreases 5HT turnover in hippocampus. β-endorphin increased in brain stem and hypothalamus and decreased in hippocampus the rate of pargyline-induced decline of 5-HIAA. β-endorphin decreased the rate of pargyline-induced accumulation of 5HT in all these brain regions. The probenecid-induced accumulation of 5-HIAA in brain stem was decreased by β-endorphin. These data are compatible with the hypothesis that β-endorphin increases release of 5HT from neurons in brain stem and hypothalamus and decreases release of 5HT from neurons in hippocampus. The data require further a hypothesis that β-endorphin either decreases 5HT reuptake in these three brain regions or increases 5-HIAA egress from brain.  相似文献   

13.
Male urinary pheromones modulate behavioral and neuroendocrine function in mice after being detected by sensory neurons in the vomeronasal organ (VNO) neuroepithelium. We used nuclear Fos protein immunoreactivity (Fos-IR) as a marker of changes in neuronal activity to examine the processing of male pheromones throughout the VNO projection pathway to the hypothalamus. Sexually naive male and female Balb/c mice were gonadectomized and treated daily with estradiol benzoate (EB) or oil vehicle for 3 weeks. Subjects were then exposed to soiled bedding from gonadally intact Balb/c males or to clean bedding for 90 min prior to sacrifice and processing of their VNOs and forebrains for Fos-IR. Male pheromones induced similar numbers of Fos-IR cells in the VNO neuroepithelium of oil-treated male and female subjects; however, EB-treated females had significantly more Fos-IR neurons in the VNO than any other group. There was an equivalent neuronal Fos response to male odors in the mitral and granule cells of the anterior and posterior accessory olfactory bulb of males and females, regardless of hormone treatment. In central portions of the VNO projection pathway (i.e., bed nucleus of the stria terminalis, medial preoptic area) neuronal Fos responses to male pheromones were present in female but absent in male subjects, regardless of hormone treatment. In a separate experiment, mating induced neuronal Fos-IR in these brain regions at levels in gonadally intact male subjects which were equal to or greater than those seen in ovariectomized females primed with estrogen and progesterone. This suggests that neurons in the central portions of the male's VNO pathway are capable of expressing Fos. Our results suggest that sexually dimorphic central responses to pheromones exist in mice that may begin in the VNO neuroepithelium.  相似文献   

14.
Aromatase, the enzyme responsible for the conversion of testosterone to estradiol, is found in the rat brain and is present in regions of the preoptic area, hypothalamus, and limbic system. Gonadal steroid hormones regulate aromatase activity levels in many brain regions, but not all. Using in situ hybridization, we examined the distribution of aromatase mRNA in the adult male forebrain, as well as the levels of aromatase mRNA in the brains of males and females, and the regulation by gonadal steroid hormones. In the adult male, many heavily labelled cells were found in the encapsulated bed nucleus of the stria terminalis (BNST), the medial preoptic nucleus (MPN), the ventro-medial nucleus (VMN), the medial amygdala (mAMY) and the cortical amygdala (CoAMY). The regional distribution of aromatase mRNA was similar in males and females, but males tended to have a greater number of aromatase mRNA-expressing cells in each region compared to females. Aromatase mRNA levels in the BNST, MPN, VMN and mAMY tended to be lower in castrated males than in intact males, whereas aromatase mRNA levels were unaltered by castration in the CoAMY. Further analysis of individual cells expressing aromatase mRNA suggests that aromatase mRNA may be regulated by steroid hormones differentially in specific populations of cells in regions where enzyme activity levels are steroid-hormone-dependent.  相似文献   

15.
Throughout the hypothalamus there are several regions known to contain sex differences in specific cellular, neurochemical, or cell grouping characteristics. The current study examined the potential origin of sex differences in calbindin expression in the preoptic area and hypothalamus as related to sources of nitric oxide. Specific cell populations were defined by immunoreactive (ir) calbindin and neuronal nitric oxide synthase (nNOS) in the preoptic area/anterior hypothalamus (POA/AH), anteroventral periventricular nucleus (AVPv), and ventromedial nucleus of the hypothalamus (VMN). The POA/AH of adult mice was characterized by a striking sex difference in the distribution of cells with ir-calbindin. Examination of the POA/AH of androgen receptor deficient Tfm mice suggests that this pattern was in part androgen receptor dependent, since Tfm males had reduced ir-calbindin compared with wild-type males and more similar to wild-type females. At P0 ir-calbindin was more prevalent than in adulthood, with males having significantly more ir-calbindin and nNOS than have females. Cells that contained either ir-calbindin or ir-nNOS in the POA/AH were in adjacent cell groups, suggesting that NO derived from the enzymatic activity of nNOS may influence the development of ir-calbindin cells. In the region of AVPv, at P0, there was a sex difference with males having more ir-nNOS fibers than have females while ir-calbindin was not detected. In the VMN, at P0, ir-nNOS was greater in females than in males, with no significant difference in ir-calbindin. We suggest that NO as an effector molecule and calbindin as a molecular biomarker illuminate key aspects of sexual differentiation in the developing mouse brain.  相似文献   

16.
We investigated the effects of hydrocortisone acetate and dexamethasone administered to pregnant rats during the last gestational week on sexual differentiation of testosterone metabolism and biogenic monoamine contents and turnover in the discrete brain regions in 10-day-old offspring. In the preoptic area, sex-dependent differences in aromatase activity were attenuated by prenatal glucocorticoids. Prenatal dexamethasone but not hydrocortisone acetate caused the inversion of sexual dimorphism of 5alpha-reductase activity in the preoptic area. In the brain preoptic area of the male pups prenatally exposed to hydrocortisone acetate, a decrease in noradrenaline turnover was found. Dopamine turnover in the preoptic area and 5-hydroxytryptamine metabolism in the preoptic area and medial basal hypothalamus increased in females as a result of hydrocortisone acetate treatment. Our results indicate that excess glucocorticoids in prenatal life modifies the basic neurochemical and neurophysiological mechanisms of sexual brain differentiation and might contribute to behavioral and reproductive disorders in adulthood.  相似文献   

17.
Urine washing (UW) consists of depositing urine on the hands and vigorously rubbing the body. As urine contains chemical and pheromonal cues, UW may convey socially relevant information. Although ritualized UW is observed in many New World primates, including capuchin monkeys, the functional significance of UW remains unclear. In this experiment, we investigated the social signaling hypothesis of UW. Specifically, we hypothesized that UW by males conveys socially relevant signals that females can detect. We used functional magnetic resonance imaging (fMRI) to test whether adult female capuchins show differential brain activation in response to adult male and juvenile male capuchin urine. We expected to see changes in activation of structures involved in olfactory processing, including the piriform cortex, medial preoptic and anterior hypothesis, orbitofrontal cortex, hippocampus, and cerebellum. Data were acquired from four adult female capuchin monkeys. Presentations of odor stimuli (obtained from unfamiliar males) were made during fMRI acquisition using a standard ON-OFF design. All fMRI data were spatially normalized to a template and analyzed using the FMRI Expert Analysis Tool Version 5.98, part of the FMRIB's Software Library (www.fmrib.ox.ac.uk/fsl). Whole brain analyses revealed significant activations in the inferior temporal cortex, parahippocampal gyrus, precuneus, hippocampus, pulvinar, and cerebellum when females were presented with the adult male urine. Notably, significantly greater signal activation was observed in several regions associated with olfactory processing, when subjects were presented with adult male urine as compared with urine from juvenile males. Our results indicate that UW serves a social communicative function in capuchins, providing support for the sexual signaling hypothesis.  相似文献   

18.
Normative data on the in vivo size of the human brain and its major anatomically defined subdivisions are not readily available. In this study, high-resolution magnetic resonance imaging was used to measure regional brain volumes in 46 normal, right-handed adults (23 men, 23 women) between the ages of 22-49 years. Parcellation of the brain was based on neuroanatomical landmarks. The following brain regions were measured: the cerebral hemispheres, frontal lobe, temporal lobe, parietal lobe, occipital lobe, cingulate gyrus, insula, cerebellum, corpus callosum, and lateral ventricles. Males tend to be significantly larger than females, for the whole brain and for nearly all of its major subdivisions, including the corpus callosum. However, the proportional sizes of regions relative to total volume of the hemisphere are remarkably similar in males and females. Variation in size of region is always greater than variation in proportional representation. Asymmetries in brain regions are not profound, with the exception of the cingulate gyrus, which is larger in the left hemisphere. Brain regions are highly correlated in size, with the exception of the lateral ventricles. After controlling for hemisphere size, the volumes of the frontal and parietal lobes are significantly negatively correlated. The occipital lobe tends to be less sexually dimorphic than other major lobes, and less correlated with other brain regions for volume. These results have implications for understanding whether or not certain sectors of the brain have shown relative expansion over the course of hominid and hominoid evolution.  相似文献   

19.
Four areas in the late embryonic murine forebrain, i.e. the subpallium (striatum), the preoptic region, the ventral thalamus, and the hypothalamus, have been described to express the basic helix-loop-helix (bHLH) gene mammalian achaete-scute homolog Mash1 (Ascl1, Mouse Genome Informatics) in a complementary fashion to another bHLH gene, neurogenin1 (ngn1) (Neurod3, Mouse Genome Informatics), which is expressed in directly adjacent forebrain regions. We report here that the four regions previously identified as subpallium, preoptic region, ventral thalamus and hypothalamus (i.e. ventral inferior lobe) in the postembryonic zebrafish brain show Zash-1a expression at 3 days postfertilization (dpf), whereas none of those areas express the bHLH gene neuroD (nrd) between 2 and 5 dpf. This indicates that two well established alternative genetic pathways involved in neurogenesis in the amniote (mammalian) brain are present in homologous phenotypic locations in the anamniote (zebrafish) brain as well and that these pathways possibly act similarly in the generation of different neuronal phenotypes (e.g. subpallial GABAergic interneurons versus pallial glutamatergic projection neurons, or dopaminergic neurons versus other neurotransmitter phenotypes). Furthermore, previous initial identification of early postembryonic brain subdivisions in the zebrafish is strongly corroborated by these expression patterns.  相似文献   

20.
We studied the ability of neural tissues from fetal rhesus macaques to aromatize androgens to estrogens and assessed whether androgens are involved in the regulation of aromatase activity during development. Fetuses of both sexes, obtained on approximately Day 100 of gestation, were gonadectomized and immediately given intraabdominal Silastic capsules containing dihydrotestosterone. Sham-gonadectomized (intact) and gonadectomized, sham-implanted groups were also studied. Three weeks after the initial operation, the fetuses were delivered by cesarean section. To examine the developmental pattern of aromatase activity in the brain, fetuses were also delivered at two earlier times in gestation (at approximately 50 days and approximately 80 days). Whole-homogenates of preoptic area plus anterior hypothalamus (POA), hypothalamus (HT), amygdala (AMYG), and cerebral cortex (CTX) were incubated for 1 h in a phosphate buffer with saturating concentrations of [1 beta-3H] androstenedione. The amount of 3H2O formed was used as an index to estimate aromatase activity. The aromatase reaction exhibited Michaelis-Menten kinetics with an apparent Km of approximately 0.03 microM in all tissues from 120-day-old fetuses. Activity measured with the 3H2O assay closely corresponded with levels determined by product isolation. The highest levels of aromatase activity were found in the POA. Neither gonadectomy nor treatment with androgen affected aromatase in fetal tissue; activities in males were significantly greater than in females for the AMYG and CTX, but not for the POA or HT. The levels of aromatase activity detected in the HT and CTX of both sexes on Days 50 and 80 of gestation were at least ten times greater than the levels measured in adults.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号