首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu HY  Sun ZP  Zhao YM  Si JQ  Zheng Y 《生理学报》2004,56(1):107-111
为研究血管升压素(arginine vasopressin,AVP)对大鼠背根神经节(dorsal root ganglion,DRG)神经元的作用及其机制,用细胞内微电极记录技术记录离体灌流DRG神经元的膜电位。结果如下:(1)在受检的120个细胞中,大多数(81.67%)在滴加AVP后产生明显的超极化反应。(2)滴加AVP(10μmol/L)后膜电导增加约19.34%(P<0.05)。(3)灌流平衡液巾的NaCl以氯化胆碱(CH-Cl)置代和用Cd2+阻断Ca2+通道后,AVP引起超极化反应的幅值均无明显变化(P>0.05),而加入K+通道阻断剂四乙铵(TEA)后,AVP引起的超极化反应幅值明显减小(P<0.05)。(4)AVP引起的超极化反应可被AVP V.受体拈抗剂阻断。结果捉示,AVP可使DRG大多数神经元膜产生超极化,DRG神经元膜上存在AVP V,受体,且AVP引起的超极化反应是通过神经元膜上AVP V.受体介导的K+外流所致.AVP可能参与了初级感觉信息传入的调制。  相似文献   

2.
The resonance properties of individual neurons in entorhinal cortex (EC) may contribute to their functional properties in awake, behaving rats. Models propose that entorhinal grid cells could arise from shifts in the intrinsic frequency of neurons caused by changes in membrane potential owing to depolarizing input from neurons coding velocity. To test for potential changes in intrinsic frequency, we measured the resonance properties of neurons at different membrane potentials in neurons in medial and lateral EC. In medial entorhinal neurons, the resonant frequency of individual neurons decreased in a linear manner as the membrane potential was depolarized between -70 and -55 mV. At more hyperpolarized membrane potentials, cells asymptotically approached a maximum resonance frequency. Consistent with the previous studies, near resting potential, the cells of the medial EC possessed a decreasing gradient of resonance frequency along the dorsal to ventral axis, and cells of the lateral EC lacked resonant properties, regardless of membrane potential or position along the medial to lateral axis within lateral EC. Application of 10 μM ZD7288, the H-channel blocker, abolished all resonant properties in MEC cells, and resulted in physiological properties very similar to lateral EC cells. These results on resonant properties show a clear change in frequency response with depolarization that could contribute to the generation of grid cell firing properties in the medial EC.  相似文献   

3.
Neuronal shape and volume changes require accompanying cell surface adjustments. In response to osmotic perturbations, neurons show evidence of surface area regulation; shrinking neurons invaginate membrane at the substratum, pinch off vacuoles, and lower their membrane capacitance. F-actin is implicated in reprocessing newly invaginated membrane because cytochalasin causes the transient shrinking-induced invaginations, vacuole-like dilations (VLDs), to persist indefinitely instead of undergoing recovery. To help determine if cortical F-actin indeed contributes to cell surface area regulation, we test, here, the following hypothesis: invaginating VLD membrane rapidly establishes an association with F-actin and this association contributes to VLD recovery. Cultured molluscan (Lymnaea) neurons, whose large size facilitates three-dimensional imaging, were used. In fixed neurons, fluorescent F-actin stains were imaged. In live neurons, VLD membrane was monitored by brightfield microscopies and actin was monitored via a fluorescent tag. VLD formation (unlike VLD recovery) is cytochalasin insensitive and consistent with this, VLDs formed readily in cytochalasin-treated neurons but showed no association with F-actin. Normally, however (i.e., no cytochalasin), VLDs were foci for rapid reorganization of F-actin. At earliest detection (1–2 min), nascent VLDs were entirely coated with F-actin and by 5 min, VLD mouths (i.e., at the substratum) had become annuli of F-actin-rich motile leading edge. Time lapse images from live neurons showed these rings to be motile filopodia and lamellipodia. The retrieval of VLD membrane (vacuolization) occurred via actin-associated constriction of VLD mouths. The interplay of surface membrane and cortical cytoskeleton in osmotically perturbed neurons suggests that cell surface area and volume adjustments are coordinated in part via mechanosensitive F-actin dynamics. Received: 25 March 1999/Revised: 15 June 1999  相似文献   

4.
With conventional intracellular recording methods, we investigated the mechanism of actions of reactive oxygen species (ROS) derived from hypoxanthine and xanthine oxidase (HX/XO) reactions on AH/type 2 myenteric neurons in the guinea pig distal colon. Of the 54 neurons to which HX/XO was applied, 32 neurons showed a transient membrane hyperpolarization(s) followed by a long-lasting membrane depolarization. Two additional groups of 10 myenteric neurons exhibited only a membrane hyperpolarization(s) or a late-onset membrane depolarization, respectively, and the remaining two neurons did not show any response to HX/XO. Analysis of changes of the input resistance induced by HX/XO indicated that suppression and augmentation of the conductance of Ca(2+)-dependent K(+) channels are the ionic mechanisms underlying the membrane hyperpolarization and depolarization, respectively. The effects of HX/XO on myenteric neurons were mimicked by application of caffeine or H(2)O(2). The results suggest that OH(.), but neither H(2)O(2) nor O(2)(.-), is responsible for HX/XO-induced responses. The intracellular Ca(2+) store may be the acting site of ROS in colonic AH/type 2 neurons.  相似文献   

5.
The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.  相似文献   

6.
The influence of antibodies against total S100 protein fraction (AB-S100) and S100b protein (AB-S100b) on the activity of LP11 and RP11 neurons were studied in naive snails and during the nociceptive sensitization. Application of AB-S100 or AB-S100b (0.1 mg/ml) initiated membrane depolarization, increase in its excitability, and depression of neural responses to sensory stimulation in nonsensitized snails. The sensitization produced facilitation of neural transmission and increase in membrane excitability. Exposure to AB-S100 or AB-S100b (0.1 mg/ml) during sensitization substantially reduced its effects on neural transmission and membrane excitability. The difference between the extent of synaptic facilitation in neurons of sensitized snails and neurons of snails sensitized under conditions of AB-S100 or AB-S100b application was comparable with synaptic depression in neurons of naive snails produced by the isolated application of AB-S100 or AB-S100b. Application of AB-S100 of AB-S100b in the dose of 0.01 mg/ml did not change the parameters of neural activity. The obtained evidence suggest that S100 proteins (in particular, S100b) in L-RP11 neurons are involved in the mechanisms of membrane excitability, regulation of membrane potential and synaptic transmission in naive snails and in the mechanisms of membrane plasticity in the neurons during development of nociceptive sensitization.  相似文献   

7.
Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons   总被引:6,自引:0,他引:6  
The normal spontaneous bursting behavior of hippocampal pyramidal neurons was investigated. Bursting frequency was found to be membrane potential dependent, the frequency increasing with maintained depolarization and decreasing upon hyperpolarization. Short depolarizing-current pulses would trigger bursts which outlasted the stimulus, and bursting continued when synaptic transmission had been blocked. The spontaneous bursts of these neurons, in contrast to bursts induced by convulsive agents, appear to exhibit the classical behavior of endogenous bursts as observed in invertebrate neurons. The endogenous bursts in hippocampal neurons may result, also, from an interplay of intrinsic membrane currents.  相似文献   

8.
Extrapolating from a body of work on isolated neurons, a modelis suggested for how central nervous system (CNS) neurons insitu may handle local swelling and shrinking perturbations soas to interfere minimally with the primary role of neurons,synaptic information processing. The strategy used for osmoregulatorymembrane adjustments may first come into play during ontogeny,when it could provide membrane tension sensitive membrane traffickingin arborized neurons subjected to morphogenetic forces.  相似文献   

9.
Experiments were carried out on decerebrate cats to identify transsynaptic mediators of spontaneous postsynaptic inhibition of bulbar inspiratory and postinspiratory neurons. Somatic membrane potentials were recorded through the central micropipette of a coaxial multibarreled electrode. Blockers of type A gamma-aminobutyric acid (GABA-A) and glycine receptors were iontophoresed extracellularly from peripheral micropipettes surrounding the central pipette. Effective antagonism was demonstrated by iontophoresis of agonists with antagonists; application of strychnine antagonized the action of glycine but not GABA, and application of bicuculline antagonized the action of GABA but not glycine. In both types of neurons, iontophoresis of either antagonist depolarized the somatic membrane and increased input resistance throughout the respiratory cycle. Bicuculline preferentially depolarized the somatic membrane in both types of neurons during inactive phases. Strychnine increased the firing rate of inspiratory neurons during inspiration despite maintenance of somatic membrane potential at preiontophoresis levels. Tetrodotoxin reduced the effects of iontophoresed bicuculline and strychnine, suggesting that the action of the antagonists required presynaptic axonal conduction. The present results suggest that presynaptic release of both GABA and glycine contributes to tonic postsynaptic inhibition of bulbar respiratory neurons. GABA-A receptors appear to contribute to inhibition during inactive phases in inspiratory and postinspiratory neurons, whereas glycinergic mechanisms appear to contribute to inspiratory inhibition in inspiratory neurons.  相似文献   

10.
The membrane conductance of olfactory neurons of Locusta migratoria was examined using the whole-cell configuration of the patch-clamp technique. Intracellular application of the second messenger inositol 1,4,5 trisphosphate (IP(3)) via a dual pipette technique elicited a clear increase in the membrane conductance. The IP(3)-induced conductance increased due to a rise in the extracellular concentration of calcium from 100&mgr;M to 4mM. Micromolar concentrations of ruthenium red partially blocked the IP(3)-induced increase in membrane conductance. Stimulating olfactory neurons with odour (hexenoic acid) resulted in an increase in the membrane conductance partially similar to that mediated IP(3). These findings suggest that stimulation with appropriate odours as well as intracellular application of IP(3) activate the same calcium-permeable ion channels in the plasma membrane of insect olfactory neurons.  相似文献   

11.
Using intra- and extracellular recording techniques we examined the spontaneous discharge and membrane properties of respiratory-related neurons in isolated brainstem preparations of the frogs Rana catesbeiana and Rana pipiens that display spontaneous respiratory related activity in vitro. We observed neurons that depolarize during the fictive lung ventilation cycle as well as neurons that depolarize during the non-lung ventilation phase. Respiratory-related neurons demonstrated significant decreases in membrane input resistance during the fictive lung ventilation cycle but showed no evidence of voltage-dependent membrane conductances activated near resting membrane potential. Furthermore, respiratory neurons showed little spike frequency adaptation, their oscillatory activity was not dissociated from the global respiratory motor output following imposed changes in membrane potential, and spontaneous fluctuations in membrane potential were not observed following reversible interruption of respiratory burst activity by application of solutions low in calcium and high in magnesium. Taken together these results suggest that bulbar respiratory neurons in the isolated frog brainstem sampled in our study do not display endogenous bursting characteristics. Rather, they are strongly influenced by synaptic input. Accepted: 20 March 1997  相似文献   

12.
(1) Fluctuations of the membrane potential states are essential for the brain functions from the response of individual neurons to the cognitive function of the brain. It has been reported in slice preparations that the action potential duration is dependent on the membrane potential states. (2) In order to examine whether dependence of action potential duration on the membrane potential could happen in isolated individual neurons that have no network connections, we studied the membrane potential dependence of the action potential duration by artificially setting the membrane potentials to different states in individual cultured rat hippocampal neurons using patch-clamp technique. (3) We showed that the action potential of individual neurons generated from depolarized membrane potentials had broader durations than those generated from hyperpolarized membrane potentials. (4) Furthermore, the membrane potential dependence of the action potential duration was significantly reduced in the presence of voltage-gated K+ channel blockers, TEA, and 4-AP, suggesting involvement of both delayed rectifier I K and transient I A current in the membrane potential dependence of the action potential duration. (5) These results indicated that the dependence of action potential duration on the membrane potential states could be an intrinsic property of individual neurons. Bo Gong and Mingna Liu contributed equally to this work.  相似文献   

13.
A prerequisite for many studies of neurons in culture is a means of determining their original identity. We needed such a technique to study the interactions in vitro between a class of spinal cord neurons, sympathetic preganglionic neurons, and their normal target, neurons from the sympathetic chain. Here, we describe how we use two highly fluorescent carbocyanine dyes, which differ in color but are otherwise similar, to identify neurons in culture. The long carbon chain carbocyanine dyes we use are lipid-soluble and so become incorporated into the plasma membrane. Neurons can be labeled either retrogradely or during dissociation. Some of the labeled membrane gradually becomes internalized and retains its fluorescence, allowing identification of cells for several weeks in culture. These dyes do not affect the survival, development, or basic physiological properties of neurons and do not spread detectably from labeled to unlabeled neurons. It seems likely that cells become retrogradely labeled mainly by lateral diffusion of dye in the plane of the membrane. If so, carbocyanine dyes may be most useful for retrograde labeling over relatively short distances. An additional feature of carbocyanine labeling is that neuronal processes are brightly fluorescent for the first few days in culture, presumably because dye rapidly diffuses into newly inserted membrane. We have used carbocyanine dyes to identify sympathetic preganglionic neurons in culture. Our results indicate that preganglionic neurons can survive in the absence of their target cells and that several aspects of their differentiation in the absence of target appear normal.  相似文献   

14.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second-order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor-evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle-averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity.  相似文献   

15.
The structure of membranes at junctions between the plasma membrane and underlying cisterns of endoplasmic reticulum in amphioxus muscle and mouse cerebellar neurons was studied using the freeze-fracture technique. In amphioxus muscle, subsurface cisterns of sarcoplasmic reticulum form junctions with the surface membrane at the level of the sarcomere I bands. On the protoplasmic leaflet of the sarcolemma overlying these junctions were aggregates of large particles. On the protoplasmic leaflet of the membranes of cerebellar basket, stellate and Purkinie cells there were similar aggregates of large particles. In both tissues, the corresponding external membrane halves had arrays of pits apparently complementary to the aggregates of large particles. Cross fractures through junctions showed that the particle aggregates in neuronal and muscle membranes were consistently located over intracellular cisterns closely applied to the plasma membrane. Thus, a similar plasma membrane specialization is found at subsurface cisterns in mammalian neurons and amphioxus muscle. This similarity supports the hypothesis that subsurface cisterns in neurons, like those in muscle, couple some intracellular activity to the electrical activity of the plasma membrane.  相似文献   

16.
One of the major activities of developing neurons is the transport of new membrane to the growing axon. Candidates for playing a key role in the regulation of this intense traffic are the small GTP-binding proteins of the rab family. We have used hippocampal neurons in culture and analyzed membrane traffic activity after suppressing the expression of the small GTP-binding protein rab8. Inhibition of protein expression was accomplished by using sequence-specific antisense oligonucleotides. While rab8 depletion resulted in the blockage of morphological maturation in 95% of the neurons, suppression of expression of another rab protein, rab3a, had no effect, and all neurons developed normal axons and dendrites. The impairment of neuronal maturation by rab8 antisense treatment was due to inhibition of membrane traffic. Thus, by using video-enhanced differential interference contrast microscopy, we observed in the rab8-depleted cells a dramatic reduction in the number of vesicles undergoing anterograde transport. Moreover, by incubating antisense-treated neurons with Bodipy-labeled ceramide, a fluorescent marker for newly formed exocytic vesicles, we observed fluorescence labeling restricted to the Golgi apparatus, whereas in control cells labeling was found also in the neurites. These results show the role of the small GTPase rab8 in membrane traffic during neuronal process outgrowth.  相似文献   

17.
The beneficial or detrimental role of gap junction communication in the pathophysiology of brain injury is still controversial. We used co-cultures of hippocampal astrocytes and neurons, where we identified homocellular astrocyte-astrocyte and heterocellular astrocyte-neuron coupling by fluorescence recovery after photobleaching, which was decreased by the gap junction blocker carbenoxolone (CBX). In these cultures, we determined the cell type-specific effects of CBX on the excitotoxic damage caused by N-methyl-D-aspartate (NMDA). We determined in both astrocytes and neurons the influence of CBX, alone or together with NMDA challenge, on cytotoxicity using propidium iodide labeling. CBX alone was not cytotoxic, but CBX treatment differentially accelerated the NMDA-induced cell death in both astrocytes and neurons. In addition, we measured mitochondrial potential using rhodamine 123, membrane potential using the oxonol dye bis(1,3-diethylthiobarbituric acid)trimethine oxonol, cytosolic Ca(2+) level using fura-2, and formation of reactive oxygen species (ROS) using dihydroethidium. CBX alone induced neither an intracellular Ca(2+) rise nor a membrane depolarization. However, CBX elicited a mitochondrial depolarization in both astrocytes and neurons and increased the ROS formation in neurons. In contrast, NMDA caused a membrane depolarization in neurons, coinciding with intracellular Ca(2+) rise, but neither mitochondrial depolarization nor ROS production seem to be involved in NMDA-mediated cytotoxicity. Pre-treatment with CBX accelerated the NMDA-induced membrane depolarization and prevented the repolarization of neurons after the NMDA challenge. We hypothesize that these effects are possibly mediated via blockage of gap junctions, and might be involved in the mechanism of CBX-induced acceleration of excitotoxic cell death, whereas the CBX-induced mitochondrial depolarization and ROS formation are not responsible for the increase in cytotoxicity. We conclude that both in astrocytes and neurons gap junctions provide protection against NMDA-induced cytotoxicity.  相似文献   

18.
Cellular morphology, macromolecular composition, (DNA, RNA and Protein content) marker enzyme activities for neurons [neuron specific enolase (NSE)] and astrocytes [glutamine synthetase (GS)] and plasma membrane protein profiles in the bulk isolated neurons and astrocytes from control and ethanol treated rats were studied. One month aged Wistar rats were given ethanol as sole drinking fluid for 10 weeks. Scanning electron microscopy revealed a characteristic cell surface smoothening in astrocytes due to ethanol treatment. DNA levels were unaltered, while RNA and Protein contents were decreased in astrocytes and neurons. Further,3H-leucine incorporation into proteins was decreased in neurons and astrocytes derived from ethanol treated rats indicating reduced protein synthesis in neurons and astrocytes. GS activity was affected severely suggesting impairment in astrocytic functions. Plasma membrane protein composition was analyzed by 2-D electrophoresis. The analysis indicated several protein defects in the plasma membranes of neurons and astrocytes, which might be involved in membrane disorder during ethanol challenge.125I-Wheat Germ agglutinin binding studies showed three prominent proteins (160, 116 and 97 kDa) in astrocyte membrane fraction suggesting the possible involvement of N-terminal glycoproteins in altered astrocyte morphology during ethanol ingestion. Impairment in the astrocyte cell functions, protein changes in plasma membrane and cellular morphology studies suggest that astrocytes may be more vulnerable than neurons for ethanol effects.  相似文献   

19.
Electrogenesis in mouse neuroblastoma cells in vitro   总被引:12,自引:0,他引:12  
Intracellular microelectrode studies of passive membrane properties and action potential generation were carried out on cloned and uncloned mouse neuroblastoma cells in tissue culture. The cloned cells were studied between the eighth and tenth months and the uncloned cells between the third and fifth weeks after primary dissociation. Electrophysiologic measurements of cell membrane properties were made by passing stimulating current pulses across the cell membrane from an intracellular microelectrode and recording simultaneously from the same electrode, by means of a bridge circuit, the changes in membrane potential. The range of responses to electrical stimulation varied from passive increases in membrane potential to repetitive firing of action potentials. A 20 fold range in spike generating capability was found. Passive membrane properties (membrane potential, specific membrane resistivity, and specific membrane capacitance) were similar to those of sympathetic neurons in intact preparations. Seventy-nine percent of the cloned cell line compared to 94% of the uncloned line were capable of generating action potentials. Less than 2% of the cloned cells showed repetitive firing whereas 23% of the uncloned cells had this property. As in several types of normal neurons, the action potential mechanism was largely, although not completely, blocked by iontophoretic and bath applied tetrodotoxin.  相似文献   

20.
Peripherally located parts of spider mechanosensory neurons are modulated by several neurotransmitters released from apposed efferent fibers. Activities of acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) and ACh degrading enzyme acetylcholine esterase (AChE) were previously found in some efferent fibers. ChAT activity was also present in all the mechanosensory neurons, while AChE activity was only found in some. We show that spider mechanosensory neurons and probably some efferent neurons are immunoreactive to a monoclonal antibody against muscarinic ACh receptors (mAChRs). However, application of muscarinic agonists did not change the physiological responses or membrane potentials of neurons in the lyriform organ VS-3. Similarly, the sensitivities of the neurons of trichobothria (filiform hairs) remained unchanged after application of these agonists. Therefore, activation of mAChRs may only modulate the function of spider mechanosensory neurons indirectly, for example, by affecting the release of other transmitter(s). However, a subgroup of VS-3 neurons was inhibited by ACh, which also depolarized the membrane similar to these neurons’ responses to GABA, suggesting that ACh activates anion channels in these neurons. Interestingly, all of the neurons responding to ACh were the rapidly adapting Type A neurons that were previously shown to express AChE activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号